Pneumologie
DOI: 10.1055/a-2541-9872
Leitlinie

Update der S3-Leitlinie: Epidemiologie, Diagnostik und Therapie erwachsener Patienten mit nosokomialer Pneumonie

Epidemiology, diagnosis and treatment of adult patients with nosocomial pneumonia
Jessica Rademacher
 1   Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
,
Santiago Ewig
 2   Thoraxzentrum Ruhrgebiet, Department of Respiratory and Infectious Diseases, EVK Herne and Augusta-Kranken-Anstalt Bochum, Bochum, Germany
,
Béatrice Grabein
 3   LMU Hospital, Clinical Microbiology and Hospital Hygiene, Munich, Germany
,
Irit Nachtigall
 4   Division of Infectious Diseases and Infection Prevention, Helios Hospital Emil-Von-Behring, Berlin, Germany
,
Marianne Abele-Horn
 5   Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
,
Maria Deja
 6   Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Berlin, Lübeck, Germany
,
Martina Gaßner
 7   Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anaesthesiology and Intensive Care Medicine, Berlin, Germany
,
Sören Gatermann
 8   National Reference Centre for multidrug-resistant Gram-negative bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Bochum, Germany
,
Christine Geffers
 9   Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Hygiene and Environmental Medicine, Berlin, Germany
,
Herwig Gerlach
10   Department for Anaesthesia, Intensive Care Medicine and Pain Management, Vivantes-Klinikum Neukoelln, Berlin, Germany
,
Stefan Hagel
11   Jena University Hospital-Friedrich Schiller University Jena, Institute for Infectious Diseases and Infection Control, Jena, Germany
,
Claus Peter Heußel
12   Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
,
Stefan Kluge
13   Department of Intensive Care, University Hospital Hamburg-Eppendorf, Hamburg, Germany
,
Martin Kolditz
14   Medical Department 1, Division of Pulmonology, University Hospital of TU Dresden, Dresden, Germany
,
Evelyn Kramme
15   Department of Infectious Diseases and Microbiology, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Germany
,
Hilmar Kühl
16   Department of Radiology, St. Bernhard-Hospital Kamp-Lintfort, Kamp-Lintfort, Germany
,
Marcus Panning
17   Institute of Virology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
,
Peter-Michael Rath
18   Institute for Medical Microbiology, University Medicine Essen, Essen, Germany
,
Gernot Rohde
19   Department of Respiratory Medicine, Goethe University Frankfurt, University Hospital, Frankfurt/Main, Germany
,
Bernhard Schaaf
20   Department of Respiratory Medicine and Infectious Diseases, Klinikum Dortmund, Dortmund, Germany
,
Helmut J.F. Salzer
21   Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine-Pneumology, Kepler University Hospital, Medical Faculty, Johannes Kepler University, Linz, Austria
,
Dierk Schreiter
22   Helios Park Clinic, Department of Intensive Care Medicine, Leipzig, Germany
,
Hans Schweisfurth
23   Institute for Pulmonary Research (IPR), Cottbus, Germany
,
Susanne Unverzagt
24   Institute of General Practice and Family Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
,
Markus A. Weigand
25   Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, Heidelberg, Germany
,
Tobias Welte
 1   Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
,
Mathias W. Pletz
11   Jena University Hospital-Friedrich Schiller University Jena, Institute for Infectious Diseases and Infection Control, Jena, Germany
,
Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin e.V. (DGP) (federführende Fachgesellschaft) und, Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin e.V. (DGAI), Deutsche Gesellschaft für Chirurgie e.V. (DGCH), Deutsche Gesellschaft für Hygiene und Mikrobiologie e.V. (DGHM), Deutsche Gesellschaft für Infektiologie e.V. (DGI), Deutsche Gesellschaft für Internistische Intensivmedizin und Notfallmedizin e.V. (DGIIN), Deutsche Gesellschaft für Innere Medizin e.V. (DGIM), Deutsche Röntgengesellschaft, Gesellschaft für Medizinische Radiologie e.V. (DRG), Deutsche Sepsis-Gesellschaft e.V. (DSG), Gesellschaft für Virologie e.V. (GfV), Paul-Ehrlich-Gesellschaft für Infektionstherapie e.V. (PEG), Deutsche Sepsis-Hilfe e.V. (DSH) › Author Affiliations

Zusammenfassung

Hintergrund Die nosokomiale Pneumonie, die sowohl die im Krankenhaus erworbene (HAP) als auch die beatmungsassoziierte Pneumonie (VAP) umfasst, ist nach wie vor eine Hauptursache für Morbidität und Mortalität bei hospitalisierten Erwachsenen. Bei sich verändernden Erregerprofilen und aufkommenden Resistenzmustern bietet die vorliegende aktualisierte S3-Leitlinie (AWMF-Register-Nr. 020-013) eine evidenzbasierte Empfehlung zur Verbesserung der Diagnose, Risikostratifizierung und Behandlung der nosokomialen Pneumonie.

Methoden Die Aktualisierung der Leitlinie wurde von einem multidisziplinären Gremium entwickelt, in dem die wichtigsten deutschen Fachgesellschaften vertreten waren. Es wurde eine systematische Literaturrecherche mit anschließender kritischer Bewertung nach der GRADE-Methode durchgeführt. Strukturierte Konsensuskonferenzen stellten sicher, dass die Empfehlungen klinisch relevant und methodisch fundiert sind und den aktuellen Grundsätzen des Antibiotic Stewardship entsprechen.

Ergebnisse Bei der Behandlung nosokomialer Pneumonien sollten die Patienten in solche mit und solche ohne Risikofaktoren für multiresistente Erreger und/oder Pseudomonas aeruginosa unterteilt werden. Die bakterielle Multiplex-Polymerase-Kettenreaktion (PCR) sollte nicht routinemäßig eingesetzt werden. Die bronchoskopische Diagnose wird im Hinblick auf die wichtigsten Ergebnisse nicht als besser angesehen als die nicht bronchoskopische Probenahme. Eine Antibiotika-Kombinationstherapie ist Patienten mit septischem Schock und hohem Risiko für multiresistente Erreger vorbehalten, während die anderen Patienten mit einer Monotherapie (z. B. Meropenem) behandelt werden können. Bei klinisch stabilisierten Patienten sollte die Antibiotikatherapie deeskaliert und fokussiert sowie die Dauer auf 7–8 Tage verkürzt werden. Bei kritisch kranken Patienten sollte eine prolongierte Applikationsdauer geeigneter Betalaktam-Antibiotika bevorzugt werden. Bei Patienten auf der Intensivstation (ICU) besteht das Risiko einer invasiven pulmonalen Aspergillose (IPA). Die Diagnostik auf Aspergillus sollte mit einem Antigentest aus Bronchiallavageflüssigkeit erfolgen.

Schlussfolgerung Diese aktualisierte S3-Leitlinie bietet einen umfassenden, multidisziplinären Ansatz für die Behandlung der nosokomialen Pneumonie bei Erwachsenen. Durch die Integration neuer diagnostischer Verfahren und verfeinerter therapeutischer Strategien zielt sie darauf ab, die Behandlung zu standardisieren, die Ergebnisse für die Patienten sowie das antimikrobielle Stewardship zu verbessern, um das Auftreten resistenter Erreger einzudämmen.

Abstract

Background Nosocomial pneumonia, encompassing hospital-acquired (HAP) and ventilator-associated pneumonia (VAP), remains a major cause of morbidity and mortality in hospitalized adults. In response to evolving pathogen profiles and emerging resistance patterns, this updated S3 guideline (AWMF Register No. 020–013) provides an evidence-based framework to enhance the diagnosis, risk stratification, and treatment of nosocomial pneumonia.

Methods The guideline update was developed by a multidisciplinary panel representing key German professional societies. A systematic literature review was conducted with subsequent critical appraisal using the GRADE methodology. Structured consensus conferences and external reviews ensured that the recommendations were clinically relevant, methodologically sound, and aligned with current antimicrobial stewardship principles.

Results For the management of nosocomial pneumonia patients should be divided in those with and without risk factors for multidrug-resistant pathogens and/or Pseudomonas aeruginosa. Bacterial multiplex-polymerase chain reaction (PCR) should not be used routinely. Bronchoscopic diagnosis is not considered superior to non-bronchoscopic sampling in terms of main outcomes. Combination antibiotic therapy is now reserved for patients in septic shock and high risk for multidrug-resistant pathogens, while select patients may be managed with monotherapy (e. g., meropenem). In clinically stabilized patients, antibiotic therapy should be de-escalated and focused, as well as duration shortened to 7–8 days. In critically ill patients, prolonged application of suitable beta-lactam antibiotics should be preferred. Patients on the intensive care unit (ICU) are at risk for invasive pulmonary aspergillosis (IPA). Diagnostics for Aspergillus should be performed with an antigen test from bronchial lavage fluid.

Conclusion This updated S3 guideline offers a comprehensive, multidisciplinary approach to the management of nosocomial pneumonia in adults. By integrating novel diagnostic modalities and refined therapeutic strategies, it aims to standardize care, improve patient outcomes, and enhance antimicrobial stewardship to curb the emergence of resistant pathogens.



Publication History

Article published online:
01 April 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Dalhoff K, Abele-Horn M, Andreas S. et al. [Epidemiology, Diagnosis and Treatment of Adult Patients with Nosocomial Pneumonia – Update 2017 – S3 Guideline of the German Society for Anaesthesiology and Intensive Care Medicine, the German Society for Infectious Diseases, the German Society for Hygiene and Microbiology, the German Respiratory Society and the Paul-Ehrlich-Society for Chemotherapy, the German Radiological Society and the Society for Virology]. Pneumologie 2018; 72: 15-63
  • 2 AGREE Next Steps Consortium. The AGREE II Instrument [Electronic version]. http://www.agreetrust.org2017 [Internet]. Verfügbar unter:. http://www.agreetrust.org
  • 3 Shea BJ, Reeves BC, Wells G. et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017; 358: j4008
  • 4 Oxford Centre for Evidence-Based Medicine. „The Oxford 2011 Levels of Evidence“. [Internet]. Verfügbar unter: https://www.cebm.net/wp-content/uploads/2014/06/CEBM-Levels-of-Evidence-2.1.pdf
  • 5 Higgins J. Cochrane handbook for systematic reviews of interventions. Version 5.1. 0 [updated March 2011]. [Internet]. 2011 Verfügbar unter: www.cochrane-handbook.org
  • 6 Balshem H, Helfand M, Schünemann HJ. et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 2011; 64: 401-406
  • 7 European Centre for Disease Prevention and Control. Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals 2016–2017. 2023
  • 8 European Centre for Disease Prevention and Control, An agency of the European Union. Point prevalence survey database (HAI-Net). 2012
  • 9 Behnke M, Aghdassi SJ, Hansen S. et al. The Prevalence of Nosocomial Infection and Antibiotic Use in German Hospitals. Dtsch Arzteblatt Int 2017; 114: 851-857
  • 10 ECDC. Die Gesundheit in Europa erhalten – ECDC in Aktion. 2013
  • 11 NRZ. Abschlussbericht der Punkt-Prävalenzerhebung 2016 zum Vorkommen von nosokomialen Infektionen und zur Anwendung von Antibiotika an Akutkrankenhäusern in Deutschland. 2017
  • 12 NRZ. Aspekte zur Surveillance von nosokomialen Infektionen im Rahmen von Krankenhausbegehungen durch das Gesundheitsamt. 2022
  • 13 Cassini A, Plachouras D, Eckmanns T. et al. Burden of Six Healthcare-Associated Infections on European Population Health: Estimating Incidence-Based Disability-Adjusted Life Years through a Population Prevalence-Based Modelling Study. PLoS Medr 2016; 13: e1002150
  • 14 Ewig S, Kolditz M, Pletz M. et al. [Management of Adult Community-Acquired Pneumonia and Prevention – Update 2021 – Guideline of the German Respiratory Society (DGP), the Paul-Ehrlich-Society for Chemotherapy (PEG), the German Society for Infectious Diseases (DGI), the German Society of Medical Intensive Care and Emergency Medicine (DGIIN), the German Viological Society (DGV), the Competence Network CAPNETZ, the German College of General Practitioneers and Family Physicians (DEGAM), the German Society for Geriatric Medicine (DGG), the German Palliative Society (DGP), the Austrian Society of Pneumology Society (ÖGP), the Austrian Society for Infectious and Tropical Diseases (ÖGIT), the Swiss Respiratory Society (SGP) and the Swiss Society for Infectious Diseases Society (SSI)]. Pneumologie 2021; 75: 665-729
  • 15 NRZ. ITS-KISS Referenzdaten aus der Infektionssurveillance für nosokomiale Infektionen auf Intensivstationen. 2022
  • 16 Mandelli M, Mosconi P, Langer M. et al. Is pneumonia developing in patients in intensive care always a typical „nosocomial“ infection?. Lancet Lond Engl 1986; 2: 1094-1095
  • 17 Trouillet JL, Chastre J, Vuagnat A. et al. Ventilator-associated pneumonia caused by potentially drug-resistant bacteria. Am J Respir Crit Care Med 1998; 157: 531-539
  • 18 Akça O, Koltka K, Uzel S. et al. Risk factors for early-onset, ventilator-associated pneumonia in critical care patients: selected multiresistant versus nonresistant bacteria. Anesthesiology 2000; 93: 638-645
  • 19 Nseir S, Di Pompéo C, Pronnier P. et al. [Early and late nosocomial broncho-pulmonary diseases in intensive care. Comparative study of risk factors and of causing bacteria]. Presse Medicale Paris Fr 2003; 32: 1111-1115
  • 20 Sader HS, Streit JM, Carvalhaes CG. et al. Frequency of occurrence and antimicrobial susceptibility of bacteria isolated from respiratory samples of patients hospitalized with pneumonia in Western Europe, Eastern Europe and the USA: results from the SENTRY Antimicrobial Surveillance Program (2016–19). JAC-Antimicrob Resist 2021; 3: dlab117
  • 21 ECDC. Annual Epidemiological Report for 2016-Healthcare-associated infections in intensive care units. 2016
  • 22 Koulenti D, Lisboa T, Brun-Buisson C. et al. Spectrum of practice in the diagnosis of nosocomial pneumonia in patients requiring mechanical ventilation in European intensive care units. Crit Care Med 2009; 37: 2360-2368
  • 23 Quartin AA, Scerpella EG, Puttagunta S. et al. A comparison of microbiology and demographics among patients with healthcare-associated, hospital-acquired, and ventilator-associated pneumonia: a retrospective analysis of 1184 patients from a large, international study. BMC Infect Dis 2013; 13: 561
  • 24 Luyt CE, Hékimian G, Koulenti D. et al. Microbial cause of ICU-acquired pneumonia: hospital-acquired pneumonia versus ventilator-associated pneumonia. Curr Opin Crit Care 2018; 24: 332-338
  • 25 Ferrer M, Difrancesco LF, Liapikou A. et al. Polymicrobial intensive care unit-acquired pneumonia: prevalence, microbiology and outcome. Crit Care Lond Engl 2015; 19: 450
  • 26 Zilberberg MD, Nathanson BH, Puzniak LA. et al. Microbiology, empiric therapy and its impact on the outcomes of nonventilated hospital-acquired, ventilated hospital-acquired, and ventilator-associated bacterial pneumonia in the United States, 2014–2019. Infect Control Hosp Epidemiol 2022; 43: 277-283
  • 27 Shorr AF, Zilberberg MD, Micek ST. et al. Viruses are prevalent in non-ventilated hospital-acquired pneumonia. Respir Med 2017; 122: 76-80
  • 28 Cillóniz C, Dominedò C, Torres A. An overview of guidelines for the management of hospital-acquired and ventilator-associated pneumonia caused by multidrug-resistant Gram-negative bacteria. Curr Opin Infect Dis 2019; 32: 656-662
  • 29 Timsit JF, Schwebel C, Styfalova L. et al. Impact of bronchial colonization with Candida spp. on the risk of bacterial ventilator-associated pneumonia in the ICU: the FUNGIBACT prospective cohort study. Intensive Care Med 2019; 45: 834-843
  • 30 Meersseman W, Lagrou K, Spriet I. et al. Significance of the isolation of Candida species from airway samples in critically ill patients: a prospective, autopsy study. Intensive Care Med 2009; 35: 1526-1531
  • 31 ECDC. Influenza-associated invasive pulmonary aspergillosis, Europe. 2018
  • 32 Abbott JD, Fernando HVJ, Gurling K. et al. Pulmonary aspergillosis following post-influenzal bronchopneumonia treated with antibiotics. Br Med J 1952; 1: 523-525
  • 33 Lewis M, Kallenbach J, Ruff P. et al. Invasive pulmonary aspergillosis complicating influenza A pneumonia in a previously healthy patient. Chest 1985; 87: 691-693
  • 34 Schauwvlieghe AFAD, Rijnders BJA, Philips N. et al. Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: a retrospective cohort study. Lancet Respir Med 2018; 6: 782-792
  • 35 Leistner R, Schroeter L, Adam T. et al. Corticosteroids as risk factor for COVID-19-associated pulmonary aspergillosis in intensive care patients. Crit Care Lond Engl 2022; 26: 30
  • 36 Kalil AC, Metersky ML, Klompas M. et al. Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis Off Publ Infect Dis Soc Am 2016; 63: e61-e111
  • 37 Depuydt PO, Vandijck DM, Bekaert MA. et al. Determinants and impact of multidrug antibiotic resistance in pathogens causing ventilator-associated-pneumonia. Crit Care Lond Engl 2008; 12: R142
  • 38 Giantsou E, Liratzopoulos N, Efraimidou E. et al. Both early-onset and late-onset ventilator-associated pneumonia are caused mainly by potentially multiresistant bacteria. Intensive Care Med 2005; 31: 1488-1494
  • 39 Seligman R, Ramos-Lima LF, do Amaral Oliveira V. et al. Risk factors for infection with multidrug-resistant bacteria in non-ventilated patients with hospital-acquired pneumonia. J Bras Pneumol Publicacao Of Soc Bras Pneumol E Tisilogia 2013; 39: 339-348
  • 40 Leroy O, Giradie P, Yazdanpanah Y. et al. Hospital-acquired pneumonia: microbiological data and potential adequacy of antimicrobial regimens. Eur Respir J 2002; 20: 432-439
  • 41 Pilmis B, Zahar JR. Ventilator-associated pneumonia related to ESBL-producing gram negative bacilli. Ann Transl Med 2018; 6: 424
  • 42 Goulenok T, Ferroni A, Bille E. et al. Risk factors for developing ESBL E. coli: can clinicians predict infection in patients with prior colonization?. J Hosp Infect 2013; 84: 294-299
  • 43 Goodman KE, Lessler J, Cosgrove SE. et al. A Clinical Decision Tree to Predict Whether a Bacteremic Patient Is Infected With an Extended-Spectrum β-Lactamase-Producing Organism. Clin Infect Dis Off Publ Infect Dis Soc Am 2016; 63: 896-903
  • 44 Barbier F, Bailly S, Schwebel C. et al. Infection-related ventilator-associated complications in ICU patients colonised with extended-spectrum β-lactamase-producing Enterobacteriaceae. Intensive Care Med 2018; 44: 616-626
  • 45 Razazi K, Derde LPG, Verachten M. et al. Clinical impact and risk factors for colonization with extended-spectrum β-lactamase-producing bacteria in the intensive care unit. Intensive Care Med 2012; 38: 1769-1778
  • 46 Carbonne H, Le Dorze M, Bourrel AS. et al. Relation between presence of extended-spectrum β-lactamase-producing Enterobacteriaceae in systematic rectal swabs and respiratory tract specimens in ICU patients. Ann Intensive Care 2017; 7: 13
  • 47 Bruyère R, Vigneron C, Bador J. et al. Significance of Prior Digestive Colonization With Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Patients With Ventilator-Associated Pneumonia. Crit Care Med 2016; 44: 699-706
  • 48 Biehl LM, Schmidt-Hieber M, Liss B. et al. Colonization and infection with extended spectrum beta-lactamase producing Enterobacteriaceae in high-risk patients – Review of the literature from a clinical perspective. Crit Rev Microbiol 2016; 42: 1-16
  • 49 Ferrer R, Soriano A, Cantón R. et al. A systematic literature review and expert consensus on risk factors associated to infection progression in adult patients with respiratory tract or rectal colonisation by carbapenem-resistant Gram-negative bacteria. Rev Espanola Quimioter Publicacion Of Soc Espanola Quimioter 2022; 35: 455-467
  • 50 Kollef MH, Chastre J, Fagon JY. et al. Global prospective epidemiologic and surveillance study of ventilator-associated pneumonia due to Pseudomonas aeruginosa. Crit Care Med 2014; 42: 2178-2187
  • 51 Parker CM, Kutsogiannis J, Muscedere J. et al. Ventilator-associated pneumonia caused by multidrug-resistant organisms or Pseudomonas aeruginosa: prevalence, incidence, risk factors, and outcomes. J Crit Care 2008; 23: 18-26
  • 52 Koulenti D, Blot S, Dulhunty JM. et al. COPD patients with ventilator-associated pneumonia: implications for management. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol 2015; 34: 2403-2411
  • 53 Labaste F, Grossac J, Bounes FV. et al. Risk factors for acquisition of carbapenem-resistance during treatment with carbapenem in the intensive care unit: a prospective study. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol 2019; 38: 2077-2085
  • 54 Tilahun B, Faust AC, McCorstin P. et al. Nasal colonization and lower respiratory tract infections with methicillin-resistant Staphylococcus aureus. Am J Crit Care Off Publ Am Assoc Crit-Care Nurses 2015; 24: 8-12
  • 55 Dangerfield B, Chung A, Webb B. et al. Predictive value of methicillin-resistant Staphylococcus aureus (MRSA) nasal swab PCR assay for MRSA pneumonia. Antimicrob Agents Chemother 2014; 58: 859-864
  • 56 Sarikonda KV, Micek ST, Doherty JA. et al. Methicillin-resistant Staphylococcus aureus nasal colonization is a poor predictor of intensive care unit-acquired methicillin-resistant Staphylococcus aureus infections requiring antibiotic treatment. Crit Care Med 2010; 38: 1991-1995
  • 57 Ziakas PD, Anagnostou T, Mylonakis E. The prevalence and significance of methicillin-resistant Staphylococcus aureus colonization at admission in the general ICU Setting: a meta-analysis of published studies. Crit Care Med 2014; 42: 433-444
  • 58 Ekren PK, Ranzani OT, Ceccato A. et al. Evaluation of the 2016 Infectious Diseases Society of America/American Thoracic Society Guideline Criteria for Risk of Multidrug-Resistant Pathogens in Patients with Hospital-acquired and Ventilator-associated Pneumonia in the ICU. Am J Respir Crit Care Med 2018; 197: 826-830
  • 59 Torres A, Niederman MS, Chastre J. et al. Summary of the international clinical guidelines for the management of hospital-acquired and ventilator-acquired pneumonia. ERJ Open Res 2018; 4: 00028-2018
  • 60 Vo QT, Klevens RM, Bolstorff B. et al. Utilization of cumulative antibiograms for public health surveillance: Trends in Escherichia coli and Klebsiella pneumoniae susceptibility, Massachusetts, 2008-2018. Infect Control Hosp Epidemiol 2021; 42: 169-175
  • 61 Fernández J, Vazquez F. The Importance of Cumulative Antibiograms in Diagnostic Stewardship. Clin Infect Dis Off Publ Infect Dis Soc Am 2019; 69: 1086-1087
  • 62 Ego A, Preiser JC, Vincent JL. Impact of diagnostic criteria on the incidence of ventilator-associated pneumonia. Chest 2015; 147: 347-355
  • 63 Johanson WG, Pierce AK, Sanford JP. et al. Nosocomial respiratory infections with gram-negative bacilli. The significance of colonization of the respiratory tract. Ann Intern Med 1972; 77: 701-706
  • 64 Fàbregas N, Ewig S, Torres A. et al. Clinical diagnosis of ventilator associated pneumonia revisited: comparative validation using immediate post-mortem lung biopsies. Thorax 1999; 54: 867-873
  • 65 Fagon JY, Chastre J, Hance AJ. et al. Evaluation of clinical judgment in the identification and treatment of nosocomial pneumonia in ventilated patients. Chest 1993; 103: 547-553
  • 66 Wunderink RG, Woldenberg LS, Zeiss J. et al. The radiologic diagnosis of autopsy-proven ventilator-associated pneumonia. Chest 1992; 101: 458-463
  • 67 Russell CD, Koch O, Laurenson IF. et al. Diagnosis and features of hospital-acquired pneumonia: a retrospective cohort study. J Hosp Infect 2016; 92: 273-279
  • 68 Burton LA, Price R, Barr KE. et al. Hospital-acquired pneumonia incidence and diagnosis in older patients. Age Ageing 2016; 45: 171-174
  • 69 Helling TS, Van Way C, Krantz S. et al. The value of clinical judgment in the diagnosis of nosocomial pneumonia. Am J Surg 1996; 171: 570-575
  • 70 Singer M, Deutschman CS, Seymour CW. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315: 801-810
  • 71 Seymour CW, Liu VX, Iwashyna TJ. et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315: 762-774
  • 72 Combes A, Luyt CE, Fagon JY. et al. Early predictors for infection recurrence and death in patients with ventilator-associated pneumonia. Crit Care Med 2007; 35: 146-154
  • 73 Zhou XY, Ben SQ, Chen HL. et al. A comparison of APACHE II and CPIS scores for the prediction of 30-day mortality in patients with ventilator-associated pneumonia. Int J Infect Dis IJID Off Publ Int Soc Infect Dis 2015; 30: 144-7
  • 74 Larsson J, Itenov TS, Bestle MH. Risk prediction models for mortality in patients with ventilator-associated pneumonia: A systematic review and meta-analysis. J Crit Care 2017; 37: 112-118
  • 75 Fernando SM, Tran A, Cheng W. et al. Diagnosis of ventilator-associated pneumonia in critically ill adult patients – a systematic review and meta-analysis. Intensive Care Med 2020; 46: 1170-1179
  • 76 Hellyer TP, McAuley DF, Walsh TS. et al. Biomarker-guided antibiotic stewardship in suspected ventilator-associated pneumonia (VAPrapid2): a randomised controlled trial and process evaluation. Lancet Respir Med 2020; 8: 182-191
  • 77 Coelho L, Rabello L, Salluh J. et al. C-reactive protein and procalcitonin profile in ventilator-associated lower respiratory infections. J Crit Care 2018; 48: 385-389
  • 78 Zheng N, Zhu D, Han Y. Procalcitonin and C-reactive protein perform better than the neutrophil/lymphocyte count ratio in evaluating hospital acquired pneumonia. BMC Pulm Med 2020; 20: 166
  • 79 Póvoa P, Martin-Loeches I, Ramirez P. et al. Biomarker kinetics in the prediction of VAP diagnosis: results from the BioVAP study. Ann Intensive Care 2016; 6: 32
  • 80 Ramirez P, Garcia MA, Ferrer M. et al. Sequential measurements of procalcitonin levels in diagnosing ventilator-associated pneumonia. Eur Respir J 2008; 31: 356-362
  • 81 Jin H, Gu SP, Wang Y. et al. Diagnosis Value of Procalcitonin Variation on Early Pneumonia after Adult Cardiac Surgery. Heart Surg Forum 2021; 24: E734-E740
  • 82 Ferreira-Coimbra J, Ardanuy C, Diaz E. et al. Ventilator-associated pneumonia diagnosis: a prioritization exercise based on multi-criteria decision analysis. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol 2020; 39: 281-286
  • 83 Salluh JIF, Souza-Dantas VC, Póvoa P. The current status of biomarkers for the diagnosis of nosocomial pneumonias. Curr Opin Crit Care 2017; 23: 391-397
  • 84 Alessandri F, Pugliese F, Angeletti S. et al. Procalcitonin in the Assessment of Ventilator Associated Pneumonia: A Systematic Review. Adv Exp Med Biol 2021; 1323: 103-114
  • 85 Cowman K, Rossi J, Gendlina I. et al. Elucidating the role of procalcitonin as a biomarker in hospitalized COVID-19 patients. Diagn Microbiol Infect Dis 2022; 103: 115721
  • 86 Póvoa P, Martin-Loeches I, Ramirez P. et al. Biomarkers kinetics in the assessment of ventilator-associated pneumonia response to antibiotics – results from the BioVAP study. J Crit Care 2017; 41: 91-97
  • 87 Luyt CE, Guérin V, Combes A. et al. Procalcitonin kinetics as a prognostic marker of ventilator-associated pneumonia. Am J Respir Crit Care Med 2005; 171: 48-53
  • 88 Lisboa T, Seligman R, Diaz E. et al. C-reactive protein correlates with bacterial load and appropriate antibiotic therapy in suspected ventilator-associated pneumonia. Crit Care Med 2008; 36: 166-171
  • 89 Brunkhorst FM, Weigand MA, Pletz M. et al. [S3 Guideline Sepsis-prevention, diagnosis, therapy, and aftercare : Long version]. Med Klin Intensivmed Notfallmedizin 2020; 115 (Suppl. 02) 37-109
  • 90 Casserly B, Phillips GS, Schorr C. et al. Lactate measurements in sepsis-induced tissue hypoperfusion: results from the Surviving Sepsis Campaign database. Crit Care Med 2015; 43: 567-573
  • 91 Shankar-Hari M, Phillips GS, Levy ML. et al. Developing a New Definition and Assessing New Clinical Criteria for Septic Shock: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315: 775-787
  • 92 Gu WJ, Zhang Z, Bakker J. Early lactate clearance-guided therapy in patients with sepsis: a meta-analysis with trial sequential analysis of randomized controlled trials. Intensive Care Med 2015; 41: 1862-1863
  • 93 Pan J, Peng M, Liao C. et al. Relative efficacy and safety of early lactate clearance-guided therapy resuscitation in patients with sepsis: A meta-analysis. Medicine (Baltimore) 2019; 98: e14453
  • 94 Kluge S, Janssens U, Welte T. et al. S3-Leitlinie – Empfehlungen zur stationären Therapie von Patienten mit COVID-19. AWMF-Register-Nr. 113/001.
  • 95 Sopena N, Sabrià M. Neunos 2000 Study Group. Multicenter study of hospital-acquired pneumonia in non-ICU patients. Chest 2005; 127: 213-219
  • 96 Luna CM, Videla A, Mattera J. et al. Blood cultures have limited value in predicting severity of illness and as a diagnostic tool in ventilator-associated pneumonia. Chest 1999; 116: 1075-1084
  • 97 Park DR. The microbiology of ventilator-associated pneumonia. Respir Care 2005; 50: 742-763 discussion 763–765
  • 98 Shimada T, Noguchi Y, Jackson JL. et al. Systematic review and metaanalysis: urinary antigen tests for Legionellosis. Chest 2009; 136: 1576-1585
  • 99 Olsen CW, Elverdal P, Jørgensen CS. et al. Comparison of the sensitivity of the Legionella urinary antigen EIA kits from Binax and Biotest with urine from patients with infections caused by less common serogroups and subgroups of Legionella. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol 2009; 28: 817-820
  • 100 Suaya JA, Fletcher MA, Georgalis L. et al. Identification of Streptococcus pneumoniae in hospital-acquired pneumonia in adults. J Hosp Infect 2021; 108: 146-157
  • 101 Ranzani OT, Senussi T, Idone F. et al. Invasive and non-invasive diagnostic approaches for microbiological diagnosis of hospital-acquired pneumonia. Crit Care Lond Engl 2019; 23: 51
  • 102 Gottesman T, Yossepowitch O, Lerner E. et al. The accuracy of Gram stain of respiratory specimens in excluding Staphylococcus aureus in ventilator-associated pneumonia. J Crit Care 2014; 29: 739-742
  • 103 O’Horo JC, Thompson D, Safdar N. Is the gram stain useful in the microbiologic diagnosis of VAP? A meta-analysis. Clin Infect Dis Off Publ Infect Dis Soc Am 2012; 55: 551-561
  • 104 Ranzani OT, Motos A, Chiurazzi C. et al. Diagnostic accuracy of Gram staining when predicting staphylococcal hospital-acquired pneumonia and ventilator-associated pneumonia: a systematic review and meta-analysis. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 2020; 26: 1456-1463
  • 105 Yoshimura J, Yamakawa K, Ohta Y. et al. Effect of Gram Stain-Guided Initial Antibiotic Therapy on Clinical Response in Patients With Ventilator-Associated Pneumonia: The GRACE-VAP Randomized Clinical Trial. JAMA Netw Open 2022; 5: e226136
  • 106 Liu C, Du Z, Zhou Q. et al. Microscopic examination of intracellular organisms in bronchoalveolar lavage fluid for the diagnosis of ventilator-associated pneumonia: a prospective multi-center study. Chin Med J (Engl) 2014; 127: 1808-1813
  • 107 Baselski VS, el-Torky M, Coalson JJ. et al. The standardization of criteria for processing and interpreting laboratory specimens in patients with suspected ventilator-associated pneumonia. Chest 1992; 102 (Suppl. 01) 571S-579S
  • 108 Souweine B, Veber B, Bedos JP. et al. Diagnostic accuracy of protected specimen brush and bronchoalveolar lavage in nosocomial pneumonia: impact of previous antimicrobial treatments. Crit Care Med 1998; 26: 236-244
  • 109 Darie AM, Khanna N, Jahn K. et al. Fast multiplex bacterial PCR of bronchoalveolar lavage for antibiotic stewardship in hospitalised patients with pneumonia at risk of Gram-negative bacterial infection (Flagship II): a multicentre, randomised controlled trial. Lancet Respir Med 2022; 10: P877-P887
  • 110 Fartoukh M, Nseir S, Mégarbane B. et al. Respiratory multiplex PCR and procalcitonin to reduce antibiotic exposure in severe SARS-CoV-2 pneumonia: a multicentre randomized controlled trial. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 2023; 29: 734-743
  • 111 Salina A, Schumann DM, Franchetti L. et al. Multiplex bacterial PCR in the bronchoalveolar lavage fluid of non-intubated patients with suspected pulmonary infection: a quasi-experimental study. ERJ Open Res 2022; 8: 00595-2021
  • 112 Enne VI, Aydin A, Baldan R. et al. Multicentre evaluation of two multiplex PCR platforms for the rapid microbiological investigation of nosocomial pneumonia in UK ICUs: the INHALE WP1 study. Thorax 2022; 77: 1220-1228
  • 113 Luyt CE, Hékimian G, Bonnet I. et al. Usefulness of point-of-care multiplex PCR to rapidly identify pathogens responsible for ventilator-associated pneumonia and their resistance to antibiotics: an observational study. Crit Care Lond Engl 2020; 24: 378
  • 114 High J, Enne VI, Barber JA. et al. INHALE: the impact of using FilmArray Pneumonia Panel molecular diagnostics for hospital-acquired and ventilator-associated pneumonia on antimicrobial stewardship and patient outcomes in UK Critical Care – study protocol for a multicentre randomised controlled trial. Trials 2021; 22: 680
  • 115 Bassetti M, Giacobbe DR, Grecchi C. et al. Performance of existing definitions and tests for the diagnosis of invasive aspergillosis in critically ill, adult patients: A systematic review with qualitative evidence synthesis. J Infect 2020; 81: 131-146
  • 116 Zhang L, Guo Z, Xie S. et al. The performance of galactomannan in combination with 1,3-β-D-glucan or aspergillus-lateral flow device for the diagnosis of invasive aspergillosis: Evidences from 13 studies. Diagn Microbiol Infect Dis 2019; 93: 44-53
  • 117 Herbrecht R, Kuessner D, Pooley N. et al. Systematic review and network meta-analysis of clinical outcomes associated with isavuconazole versus relevant comparators for patients with invasive aspergillosis. Curr Med Res Opin 2018; 34: 2187-2195
  • 118 Cornely OA, Maertens J, Bresnik M. et al. Liposomal amphotericin B as initial therapy for invasive mold infection: a randomized trial comparing a high-loading dose regimen with standard dosing (AmBiLoad trial). Clin Infect Dis Off Publ Infect Dis Soc Am 2007; 44: 1289-1297
  • 119 Maertens JA, Rahav G, Lee DG. et al. Posaconazole versus voriconazole for primary treatment of invasive aspergillosis: a phase 3, randomised, controlled, non-inferiority trial. Lancet Lond Engl 2021; 397: 499-509
  • 120 Jenks JD, Nam HH, Hoenigl M. Invasive aspergillosis in critically ill patients: Review of definitions and diagnostic approaches. Mycoses 2021; 64: 1002-1014
  • 121 Alexander BD, Lamoth F, Heussel CP. et al. Guidance on Imaging for Invasive Pulmonary Aspergillosis and Mucormycosis: From the Imaging Working Group for the Revision and Update of the Consensus Definitions of Fungal Disease from the EORTC/MSGERC. Clin Infect Dis Off Publ Infect Dis Soc Am 2021; 72 (Suppl. 02) S79-S88
  • 122 Desai SR, Hedayati V, Patel K. et al. Chronic Aspergillosis of the Lungs: Unravelling the Terminology and Radiology. Eur Radiol 2015; 25: 3100-3107
  • 123 Park SY, Lim C, Lee SO. et al. Computed tomography findings in invasive pulmonary aspergillosis in non-neutropenic transplant recipients and neutropenic patients, and their prognostic value. J Infect 2011; 63: 447-456
  • 124 Sanguinetti M, Posteraro B, Beigelman-Aubry C. et al. Diagnosis and treatment of invasive fungal infections: looking ahead. J Antimicrob Chemother 2019; 74 (Suppl. 02) ii27-ii37
  • 125 Zhang L, Che C. Clinical manifestations and outcome analysis of invasive pulmonary aspergillosis infection: a retrospective study in 43 nonneutropenic patients. J Int Med Res 2019; 47: 5680-5688
  • 126 Chen F, Zhong Y, Li N. et al. Dynamic monitor of CT scan within short interval in invasive pulmonary aspergillosis for nonneutropenic patients: a retrospective analysis in two centers. BMC Pulm Med 2021; 21: 142
  • 127 Loughlin L, Hellyer TP, White PL. et al. Pulmonary Aspergillosis in Patients with Suspected Ventilator-associated Pneumonia in UK ICUs. Am J Respir Crit Care Med 2020; 202: 1125-1132
  • 128 Salzer HJF, Lange C, Hönigl M. [Aspergillus in airway material: Ignore or treat?]. Internist 2017; 58: 1150-1162
  • 129 Schroeder M, Giese M, Wijaya C. et al. Comparison of four diagnostic criteria for invasive pulmonary aspergillosis-A diagnostic accuracy study in critically ill patients. Mycoses 2022; 65: 824-833
  • 130 Bassetti M, Zuccaro V, Asperges E. et al. Performance of existing definitions and tests for the diagnosis of invasive aspergillosis in critically ill, non-neutropenic, adult patients: An update including COVID-19 data. J Infect 2022; 85: 573-607
  • 131 Koehler P, Bassetti M, Chakrabarti A. et al. Defining and managing COVID-19-associated pulmonary aspergillosis: the 2020 ECMM/ISHAM consensus criteria for research and clinical guidance. Lancet Infect Dis 2021; 21: e149-e162
  • 132 Verweij PE, Rijnders BJA, Brüggemann RJM. et al. Review of influenza-associated pulmonary aspergillosis in ICU patients and proposal for a case definition: an expert opinion. Intensive Care Med 2020; 46: 1524-1535
  • 133 Hage CA, Carmona EM, Epelbaum O. et al. Microbiological Laboratory Testing in the Diagnosis of Fungal Infections in Pulmonary and Critical Care Practice. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med 2019; 200: 535-550
  • 134 Hong HL, Hong SB, Ko GB. et al. Viral infection is not uncommon in adult patients with severe hospital-acquired pneumonia. PloS One 2014; 9: e95865
  • 135 van Someren Gréve F, Ong DSY, Cremer OL. et al. Clinical practice of respiratory virus diagnostics in critically ill patients with a suspected pneumonia: A prospective observational study. J Clin Virol Off Publ Pan Am Soc Clin Virol 2016; 83: 37-42
  • 136 Giannella M, Rodríguez-Sánchez B, Roa PL. et al. Should lower respiratory tract secretions from intensive care patients be systematically screened for influenza virus during the influenza season?. Crit Care Lond Engl 2012; 16: R104
  • 137 Hagel S, Ludewig K, Moeser A. et al. Characteristics and management of patients with influenza in a German hospital during the 2014/2015 influenza season. Infection 2016; 44: 667-672
  • 138 Huzly D, Kurz S, Ebner W. et al. Characterisation of nosocomial and community-acquired influenza in a large university hospital during two consecutive influenza seasons. J Clin Virol Off Publ Pan Am Soc Clin Virol 2015; 73: 47-51
  • 139 Templeton KE, Scheltinga SA, van den Eeden WCJFM. et al. Improved diagnosis of the etiology of community-acquired pneumonia with real-time polymerase chain reaction. Clin Infect Dis Off Publ Infect Dis Soc Am 2005; 41: 345-351
  • 140 Chen JHK, Lam HY, Yip CCY. et al. Clinical Evaluation of the New High-Throughput Luminex NxTAG Respiratory Pathogen Panel Assay for Multiplex Respiratory Pathogen Detection. J Clin Microbiol 2016; 54: 1820-1825
  • 141 Poole S, Tanner AR, Naidu VV. et al. Molecular point-of-care testing for lower respiratory tract pathogens improves safe antibiotic de-escalation in patients with pneumonia in the ICU: Results of a randomised controlled trial. J Infect 2022; 85: 625-633
  • 142 Berton DC, Kalil AC, Teixeira PJZ. Quantitative versus qualitative cultures of respiratory secretions for clinical outcomes in patients with ventilator-associated pneumonia. Cochrane Database Syst Rev 2014; 2014: CD006482
  • 143 Canadian Critical Care Trials Group. A randomized trial of diagnostic techniques for ventilator-associated pneumonia. N Engl J Med 2006; 355: 2619-2630
  • 144 Fagon JY, Chastre J, Wolff M. et al. Invasive and noninvasive strategies for management of suspected ventilator-associated pneumonia. A randomized trial. Ann Intern Med 2000; 132: 621-630
  • 145 Ruiz M, Torres A, Ewig S. et al. Noninvasive versus invasive microbial investigation in ventilator-associated pneumonia: evaluation of outcome. Am J Respir Crit Care Med 2000; 162: 119-125
  • 146 Sanchez-Nieto JM, Torres A, Garcia-Cordoba F. et al. Impact of invasive and noninvasive quantitative culture sampling on outcome of ventilator-associated pneumonia: a pilot study. Am J Respir Crit Care Med 1998; 157: 371-376
  • 147 Solé Violán J, Fernández JA, Benítez AB. et al. Impact of quantitative invasive diagnostic techniques in the management and outcome of mechanically ventilated patients with suspected pneumonia. Crit Care Med 2000; 28: 2737-2741
  • 148 Fàbregas N, Torres A, El-Ebiary M. et al. Histopathologic and microbiologic aspects of ventilator-associated pneumonia. Anesthesiology 1996; 84: 760-771
  • 149 Kirtland SH, Corley DE, Winterbauer RH. et al. The diagnosis of ventilator-associated pneumonia: a comparison of histologic, microbiologic, and clinical criteria. Chest 1997; 112: 445-457
  • 150 Martin-Loeches I, Chastre J, Wunderink RG. Bronchoscopy for diagnosis of ventilator-associated pneumonia. Intensive Care Med 2023; 49: 79-82
  • 151 Dickson RP, Erb-Downward JR, Prescott HC. et al. Analysis of culture-dependent versus culture-independent techniques for identification of bacteria in clinically obtained bronchoalveolar lavage fluid. J Clin Microbiol 2014; 52: 3605-3613
  • 152 Timsit JF, Misset B, Azoulay E. et al. Usefulness of airway visualization in the diagnosis of nosocomial pneumonia in ventilated patients. Chest 1996; 110: 172-179
  • 153 Bauer TT, Torres A, Ewig S. et al. Effects of bronchoalveolar lavage volume on arterial oxygenation in mechanically ventilated patients with pneumonia. Intensive Care Med 2001; 27: 384-393
  • 154 Kumar A, Roberts D, Wood KE. et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006; 34: 1589-1596
  • 155 Kneidinger N, Warszawska J, Schenk P. et al. Storage of bronchoalveolar lavage fluid and accuracy of microbiologic diagnostics in the ICU: a prospective observational study. Crit Care Lond Engl 2013; 17: R135
  • 156 de Lassence A, Joly-Guillou ML, Salah A. et al. Accuracy of delayed (24 hours) processing of bronchoalveolar lavage for diagnosing bacterial pneumonia. Crit Care Med 2004; 32: 680-685
  • 157 Ellis S, Aziz Z. Radiology as an aid to diagnosis in lung disease. Postgrad Med J 2016; 92: 620-623
  • 158 Leitlinie der Bundesärztekammer zur Qualitätssicherung in der Röntgendiagnostik. Dt Ärztebl 2022;
  • 159 Nelles E, Kamper L, Haage P. [Chest x-ray: from black and white imaging to diagnosis]. MMW Fortschr Med 2022; 164: 58-63
  • 160 Marcovici PA, Taylor GA. Journal Club: Structured radiology reports are more complete and more effective than unstructured reports. AJR Am J Roentgenol 2014; 203: 1265-1271
  • 161 Beydon L, Saada M, Liu N. et al. Can portable chest x-ray examination accurately diagnose lung consolidation after major abdominal surgery? A comparison with computed tomography scan. Chest 1992; 102: 1697-1703
  • 162 Graat ME, Choi G, Wolthuis EK. et al. The clinical value of daily routine chest radiographs in a mixed medical-surgical intensive care unit is low. Crit Care Lond Engl 2006; 10: R11
  • 163 Agarwal P, Wielandner A. [Nosocomial pneumonia from a radiological perspective]. Radiol 2017; 57: 13-21
  • 164 Claessens YE, Debray MP, Tubach F. et al. Early Chest Computed Tomography Scan to Assist Diagnosis and Guide Treatment Decision for Suspected Community-acquired Pneumonia. Am J Respir Crit Care Med 2015; 192: 974-982
  • 165 Rome L, Murali G, Lippmann M. Nonresolving pneumonia and mimics of pneumonia. Med Clin North Am 2001; 85: 1511-1530 xi
  • 166 Claessens YE, Berthier F, Baqué-Juston M. et al. Early chest CT-scan in emergency patients affected by community-acquired pneumonia is associated with improved diagnosis consistency. Eur J Emerg Med Off J Eur Soc Emerg Med 2022; 29: 417-420
  • 167 Xu E, Pérez-Torres D, Fragkou PC. et al. Nosocomial Pneumonia in the Era of Multidrug-Resistance: Updates in Diagnosis and Management. Microorganisms 2021; 9: 534
  • 168 Berlet T, Etter R, Fehr T. et al. Sonographic patterns of lung consolidation in mechanically ventilated patients with and without ventilator-associated pneumonia: a prospective cohort study. J Crit Care 2015; 30: 327-333
  • 169 Mongodi S, Via G, Girard M. et al. Lung Ultrasound for Early Diagnosis of Ventilator-Associated Pneumonia. Chest 2016; 149: 969-980
  • 170 Bourcier JE, Paquet J, Seinger M. et al. Performance comparison of lung ultrasound and chest x-ray for the diagnosis of pneumonia in the ED. Am J Emerg Med 2014; 32: 115-118
  • 171 Pasqueron J, Dureau P, Arcile G. et al. Usefulness of lung ultrasound for early detection of hospital-acquired pneumonia in cardiac critically ill patients on venoarterial extracorporeal membrane oxygenation. Ann Intensive Care 2022; 12: 43
  • 172 Haaksma ME, Smit JM, Heldeweg MLA. et al. Extended Lung Ultrasound to Differentiate Between Pneumonia and Atelectasis in Critically Ill Patients: A Diagnostic Accuracy Study. Crit Care Med 2022; 50: 750-759
  • 173 Bisarya R, Song X, Salle J. et al. Antibiotic Timing and Progression to Septic Shock Among Patients in the ED With Suspected Infection. Chest 2022; 161: 112-120
  • 174 Rüddel H, Thomas-Rüddel DO, Reinhart K. et al. Adverse effects of delayed antimicrobial treatment and surgical source control in adults with sepsis: results of a planned secondary analysis of a cluster-randomized controlled trial. Crit Care Lond Engl 2022; 26: 51
  • 175 Kim BG, Kang D, Min KH. et al. Comparison of Cefepime with Piperacillin/Tazobactam Treatment in Patients with Hospital-Acquired Pneumonia. Antibiot Basel Switz 2023; 12: 984
  • 176 Höffken G, Barth J, Rubinstein E. et al. A randomized study of sequential intravenous/oral moxifloxacin in comparison to sequential intravenous ceftriaxone/oral cefuroxime axetil in patients with hospital-acquired pneumonia. Infection 2007; 35: 414-420
  • 177 Cang HQ, Quan XH, Chu XH. et al. Carbapenems versus β-lactam and β-lactamase inhibitors for treatment of nosocomial pneumonia: A systematic review and meta-analysis. Heliyon 2023; 9: e20108
  • 178 Yakovlev SV, Stratchounski LS, Woods GL. et al. Ertapenem versus cefepime for initial empirical treatment of pneumonia acquired in skilled-care facilities or in hospitals outside the intensive care unit. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol 2006; 25: 633-641
  • 179 Hagel S, Schmitt S, Kesselmeier M. et al. M. pneumoniae and C. pneumoniae are no relevant pathogens in critically ill patients with hospital-acquired respiratory tract infections. Infection 2019; 47: 471-474
  • 180 Aarts MAW, Hancock JN, Heyland D. et al. Empiric antibiotic therapy for suspected ventilator-associated pneumonia: a systematic review and meta-analysis of randomized trials. Crit Care Med 2008; 36: 108-117
  • 181 Sieger B, Berman SJ, Geckler RW. et al. Empiric treatment of hospital-acquired lower respiratory tract infections with meropenem or ceftazidime with tobramycin: a randomized study. Meropenem Lower Respiratory Infection Group. Crit Care Med 1997; 25: 1663-1670
  • 182 Aboulatta L, Sugita H, Wakabayashi H. et al. Comparison of extended versus intermittent infusion of antipseudomonal beta-lactams for the treatment of critically ill patients with respiratory infections: A systematic review and meta-analysis. Int J Infect Dis IJID Off Publ Int Soc Infect Dis 2020; 98: 41-50
  • 183 Chen CH, Chen YM, Chang YJ. et al. Continuous versus intermittent infusions of antibiotics for the treatment of infectious diseases: Meta-analysis and systematic review. Medicine (Baltimore) 2019; 98: e14632
  • 184 Fawaz S, Barton S, Nabhani-Gebara S. Comparing clinical outcomes of piperacillin-tazobactam administration and dosage strategies in critically ill adult patients: a systematic review and meta-analysis. BMC Infect Dis 2020; 20: 430
  • 185 Lee YR, Miller PD, Alzghari SK. et al. Correction to: Continuous Infusion Versus Intermittent Bolus of Beta-Lactams in Critically Ill Patients with Respiratory Infections: A Systematic Review and Meta-analysis. Eur J Drug Metab Pharmacokinet 2018; 43: 171
  • 186 Roberts JA, Abdul-Aziz MH, Davis JS. et al. Continuous versus Intermittent β-Lactam Infusion in Severe Sepsis. A Meta-analysis of Individual Patient Data from Randomized Trials. Am J Respir Crit Care Med 2016; 194: 681-691
  • 187 Beck S, Wicha SG, Kloft C. et al. Pharmakokinetik und Pharmakodynamik der Antibiotikatherapie. Anaesthesist 2014; 63: 775-782
  • 188 Brinkmann A, Röhr AC, Köberer A. et al. Therapeutisches Drug Monitoring und individualisierte Dosierung von Antibiotika bei der Sepsis: Modern oder nur „modisch“?. Med Klin – Intensivmed Notfallmedizin 2018; 113: 82-93
  • 189 Abdul-Aziz MH, Portunato F, Roberts JA. Prolonged infusion of beta-lactam antibiotics for Gram-negative infections: rationale and evidence base. Curr Opin Infect Dis 2020; 33: 501-510
  • 190 Hagel S, Bach F, Brenner T. et al. Effect of therapeutic drug monitoring-based dose optimization of piperacillin/tazobactam on sepsis-related organ dysfunction in patients with sepsis: a randomized controlled trial. Intensive Care Med 2022; 48: 311-321
  • 191 Scaglione F, Esposito S, Leone S. et al. Feedback dose alteration significantly affects probability of pathogen eradication in nosocomial pneumonia. Eur Respir J 2009; 34: 394-400
  • 192 Giske CG, Turnidge J, Cantón R. et al. Update from the European Committee on Antimicrobial Susceptibility Testing (EUCAST). J Clin Microbiol 2022; 60: e00276-21
  • 193 Felton TW, Hope WW, Lomaestro BM. et al. Population Pharmacokinetics of Extended-Infusion Piperacillin-Tazobactam in Hospitalized Patients with Nosocomial Infections. Antimicrob Agents Chemother 2012; 56: 4087-4094
  • 194 Harris PNA, Tambyah PA, Lye DC. et al. Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients With E coli or Klebsiella pneumoniae Bloodstream Infection and Ceftriaxone Resistance: A Randomized Clinical Trial. JAMA 2018; 320: 984
  • 195 Thabit AK, Grupper M, Nicolau DP. et al. Simplifying Piperacillin/Tazobactam Dosing: Pharmacodynamics of Utilizing Only 4.5 or 3.375 g Doses for Patients With Normal and Impaired Renal Function. J Pharm Pract 2017; 30: 593-599
  • 196 Ullmann AJ, Aguado JM, Arikan-Akdagli S. et al. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 2018; 24 (Suppl. 01) e1-e38
  • 197 Lass-Flörl C, Resch G, Nachbaur D. et al. The value of computed tomography-guided percutaneous lung biopsy for diagnosis of invasive fungal infection in immunocompromised patients. Clin Infect Dis Off Publ Infect Dis Soc Am 2007; 45: e101-e104
  • 198 Hoenigl M, Duettmann W, Raggam RB. et al. Potential factors for inadequate voriconazole plasma concentrations in intensive care unit patients and patients with hematological malignancies. Antimicrob Agents Chemother 2013; 57: 3262-3267
  • 199 GERMAP. Antibiotika Resistenzen und Verbrauch [Internet]. 2015 Verfügbar unter: https://www.bvl.bund.de/SharedDocs/Downloads/05_Tierarzneimittel/germap2015.pdf;jsessionid=2C7877D110DE745054CB7601C9F8F4AD.internet951?__blob=publicationFile&v=4)
  • 200 Rohde G. Therapeutic targets in respiratory viral infections. Curr Med Chem 2007; 14: 2776-2782
  • 201 Paul M, Daikos GL, Durante-Mangoni E. et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial. Lancet Infect Dis 2018; 18: 391-400
  • 202 Bai XR, Liu JM, Jiang DC. et al. Efficacy and safety of tigecycline monotherapy versus combination therapy for the treatment of hospital-acquired pneumonia (HAP): a meta-analysis of cohort studies. J Chemother Florence Italy 2018; 30: 172-178
  • 203 Onorato L, Macera M, Calò F. et al. Beta-lactam monotherapy or combination therapy for bloodstream infections or pneumonia due to Pseudomonas aeruginosa: a meta-analysis. Int J Antimicrob Agents 2022; 59: 106512
  • 204 Kumar A, Safdar N, Kethireddy S. et al. A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: a meta-analytic/meta-regression study. Crit Care Med 2010; 38: 1651-1664
  • 205 Schmid A, Wolfensberger A, Nemeth J. et al. Monotherapy versus combination therapy for multidrug-resistant Gram-negative infections: Systematic Review and Meta-Analysis. Sci Rep 2019; 9: 15290
  • 206 Vardakas KZ, Mavroudis AD, Georgiou M. et al. Intravenous colistin combination antimicrobial treatment vs. monotherapy: a systematic review and meta-analysis. Int J Antimicrob Agents 2018; 51: 535-547
  • 207 Zusman O, Altunin S, Koppel F. et al. Polymyxin monotherapy or in combination against carbapenem-resistant bacteria: systematic review and meta-analysis. J Antimicrob Chemother 2017; 72: 29-39
  • 208 Sjövall F, Perner A, Hylander Møller M. Empirical mono- versus combination antibiotic therapy in adult intensive care patients with severe sepsis – A systematic review with meta-analysis and trial sequential analysis. J Infect 2017; 74: 331-344
  • 209 Paul M, Lador A, Grozinsky-Glasberg S. et al. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst Rev 2014; 2014: CD003344
  • 210 Seymour CW, Gesten F, Prescott HC. et al. Time to Treatment and Mortality during Mandated Emergency Care for Sepsis. N Engl J Med 2017; 376: 2235-2244
  • 211 Martin-Loeches I, Deja M, Koulenti D. et al. Potentially resistant microorganisms in intubated patients with hospital-acquired pneumonia: the interaction of ecology, shock and risk factors. Intensive Care Med 2013; 39: 672-681
  • 212 Alvarez-Lerma F, Alvarez B, Luque P. et al. Empiric broad-spectrum antibiotic therapy of nosocomial pneumonia in the intensive care unit: a prospective observational study. Crit Care Lond Engl 2006; 10: R78
  • 213 Arulkumaran N, Routledge M, Schlebusch S. et al. Antimicrobial-associated harm in critical care: a narrative review. Intensive Care Med 2020; 46: 225-235
  • 214 Garnacho-Montero J, Sa-Borges M, Sole-Violan J. et al. Optimal management therapy for Pseudomonas aeruginosa ventilator-associated pneumonia: an observational, multicenter study comparing monotherapy with combination antibiotic therapy. Crit Care Med 2007; 35: 1888-1895
  • 215 Leibovici L, Paul M, Poznanski O. et al. Monotherapy versus beta-lactam-aminoglycoside combination treatment for gram-negative bacteremia: a prospective, observational study. Antimicrob Agents Chemother 1997; 41: 1127-1133
  • 216 Heyland DK, Dodek P, Muscedere J. et al. Randomized trial of combination versus monotherapy for the empiric treatment of suspected ventilator-associated pneumonia. Crit Care Med 2008; 36: 737-744
  • 217 Bein T, Grasso S, Moerer O. et al. The standard of care of patients with ARDS: ventilatory settings and rescue therapies for refractory hypoxemia. Intensive Care Med 2016; 42: 699-711
  • 218 Russell CJ, Shiroishi MS, Siantz E. et al. The use of inhaled antibiotic therapy in the treatment of ventilator-associated pneumonia and tracheobronchitis: a systematic review. BMC Pulm Med 2016; 16: 40
  • 219 Tang R, Luo R, Wu B. et al. Effectiveness and safety of adjunctive inhaled antibiotics for ventilator-associated pneumonia: A systematic review and meta-analysis of randomized controlled trials. J Crit Care 2021; 65: 133-139
  • 220 Valachis A, Samonis G, Kofteridis DP. The role of aerosolized colistin in the treatment of ventilator-associated pneumonia: a systematic review and metaanalysis. Crit Care Med 2015; 43: 527-533
  • 221 Xu F, He LL, Che LQ. et al. Aerosolized antibiotics for ventilator-associated pneumonia: a pairwise and Bayesian network meta-analysis. Crit Care Lond Engl 2018; 22: 301
  • 222 Palmer LB, Smaldone GC. The Unfulfilled Promise of Inhaled Therapy in Ventilator-Associated Infections: Where Do We Go from Here?. J Aerosol Med Pulm Drug Deliv 2022; 35: 11-24
  • 223 Zampieri FG, Nassar AP, Gusmao-Flores D. et al. Nebulized antibiotics for ventilator-associated pneumonia: a systematic review and meta-analysis. Crit Care Lond Engl 2015; 19: 150
  • 224 Lu Q, Luo R, Bodin L. et al. Efficacy of high-dose nebulized colistin in ventilator-associated pneumonia caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Anesthesiology 2012; 117: 1335-1347
  • 225 Dennesen PJ, van der Ven AJ, Kessels AG. et al. Resolution of infectious parameters after antimicrobial therapy in patients with ventilator-associated pneumonia. Am J Respir Crit Care Med 2001; 163: 1371-1375
  • 226 Esperatti M, Ferrer M, Giunta V. et al. Validation of predictors of adverse outcomes in hospital-acquired pneumonia in the ICU. Crit Care Med 2013; 41: 2151-2161
  • 227 Boeck L, Eggimann P, Smyrnios N. et al. The Sequential Organ Failure Assessment score and copeptin for predicting survival in ventilator-associated pneumonia. J Crit Care 2012; 27: 523.e1-523.e9
  • 228 Eachempati SR, Hydo LJ, Shou J. et al. Does de-escalation of antibiotic therapy for ventilator-associated pneumonia affect the likelihood of recurrent pneumonia or mortality in critically ill surgical patients?. J Trauma 2009; 66: 1343-1348
  • 229 Deconinck L, Meybeck A, Patoz P. et al. Impact of combination therapy and early de-escalation on outcome of ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Infect Dis Lond Engl 2017; 49: 396-404
  • 230 Khan RA, Aziz Z. A retrospective study of antibiotic de-escalation in patients with ventilator-associated pneumonia in Malaysia. Int J Clin Pharm 2017; 39: 906-912
  • 231 Li H, Yang CH, Huang LO. et al. Antibiotics De-Escalation in the Treatment of Ventilator-Associated Pneumonia in Trauma Patients: A Retrospective Study on Propensity Score Matching Method. Chin Med J (Engl) 2018; 131: 1151-1157
  • 232 Joffe AR, Muscedere J, Marshall JC. et al. The safety of targeted antibiotic therapy for ventilator-associated pneumonia: a multicenter observational study. J Crit Care 2008; 23: 82-90
  • 233 Joung MK, Lee J-a, Moon SY. et al. Impact of de-escalation therapy on clinical outcomes for intensive care unit-acquired pneumonia. Crit Care Lond Engl 2011; 15: R79
  • 234 Peña C, Suarez C, Ocampo-Sosa A. et al. Effect of adequate single-drug vs combination antimicrobial therapy on mortality in Pseudomonas aeruginosa bloodstream infections: a post Hoc analysis of a prospective cohort. Clin Infect Dis Off Publ Infect Dis Soc Am 2013; 57: 208-216
  • 235 Daghmouri MA, Dudoignon E, Chaouch MA. et al. Comparison of a short versus long-course antibiotic therapy for ventilator-associated pneumonia: a systematic review and meta-analysis of randomized controlled trials. EClinicalMedicine 2023; 58: 101880
  • 236 Pugh R, Grant C, Cooke RPD. et al. Short-course versus prolonged-course antibiotic therapy for hospital-acquired pneumonia in critically ill adults. Cochrane Database Syst Rev 2015; 2015: CD007577
  • 237 Bouglé A, Tuffet S, Federici L. et al. Comparison of 8 versus 15 days of antibiotic therapy for Pseudomonas aeruginosa ventilator-associated pneumonia in adults: a randomized, controlled, open-label trial. Intensive Care Med 2022; 48: 841-849
  • 238 Capellier G, Mockly H, Charpentier C. et al. Early-Onset Ventilator-Associated Pneumonia in Adults Randomized Clinical Trial: Comparison of 8 versus 15 Days of Antibiotic Treatment. Spellberg B, Herausgeber. PLoS ONE 2012; 7: e41290
  • 239 Chastre J, Wolff M, Fagon JY. et al. Comparison of 8 vs 15 Days of Antibiotic Therapy for Ventilator-Associated Pneumonia in Adults: A Randomized Trial. JAMA 2003; 290: 2588
  • 240 Kollef MH, Chastre J, Clavel M. et al. A randomized trial of 7-day doripenem versus 10-day imipenem-cilastatin for ventilator-associated pneumonia. Crit Care 2012; 16: R218
  • 241 Fekih Hassen M, Ayed S, Ben Sik AliH. et al. Durée de l’antibiothérapie lors du traitement des pneumopathies acquises sous ventilation mécanique : comparaison entre sept jours et dix jours. Étude pilote. Ann Fr Anesth Réanimation 2009; 28: 16-23
  • 242 Albin OR, Kaye KS, McCreary EK. et al. Less Is More? Antibiotic Treatment Duration in Pseudomonas aeruginosa Ventilator-Associated Pneumonia. Clin Infect Dis 2023; 76: 745-749
  • 243 Abbas M, Rossel A, De Kraker MEA. et al. Association between treatment duration and mortality or relapse in adult patients with Staphylococcus aureus bacteraemia: a retrospective cohort study. Clin Microbiol Infect 2020; 26: 626-631
  • 244 Liu C, Bayer A, Cosgrove SE. et al. Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant Staphylococcus aureus Infections in Adults and Children. Clin Infect Dis 2011; 52: e18-e55
  • 245 Gutiérrez-Pizarraya A, León-García MDC, De Juan-Idígoras R. et al. Clinical impact of procalcitonin-based algorithms for duration of antibiotic treatment in critically ill adult patients with sepsis: a meta-analysis of randomized clinical trials. Expert Rev Anti Infect Ther 2022; 20: 103-112
  • 246 Beye F, Vigneron C, Dargent A. et al. Adhering to the procalcitonin algorithm allows antibiotic therapy to be shortened in patients with ventilator-associated pneumonia. J Crit Care 2019; 53: 125-131
  • 247 Bouadma L, Luyt CE, Tubach F. et al. Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. The Lancet 2010; 375: 463-474
  • 248 De Jong E, Van Oers JA, Beishuizen A. et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis 2016; 16: 819-827
  • 249 Mazlan MZ, Ismail MAH, Ali S. et al. Efficacy and safety of the point-of-care procalcitonin test for determining the antibiotic treatment duration in patients with ventilator-associated pneumonia in the intensive care unit: a randomised controlled trial. Anaesthesiol Intensive Ther 2021; 53: 207-214
  • 250 Stolz D, Smyrnios N, Eggimann P. et al. Procalcitonin for reduced antibiotic exposure in ventilator-associated pneumonia: a randomised study. Eur Respir J 2009; 34: 1364-1375
  • 251 Kang CI, Kim SH, Kim HB. et al. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis Off Publ Infect Dis Soc Am 2003; 37: 745-751
  • 252 Zahar JR, Clec’h C, Tafflet M. et al. Is methicillin resistance associated with a worse prognosis in Staphylococcus aureus ventilator-associated pneumonia?. Clin Infect Dis Off Publ Infect Dis Soc Am 2005; 41: 1224-1231
  • 253 Kato H, Hagihara M, Asai N. et al. Meta-analysis of vancomycin versus linezolid in pneumonia with proven methicillin-resistant Staphylococcus aureus. J Glob Antimicrob Resist 2021; 24: 98-105
  • 254 Wysocki M, Delatour F, Faurisson F. et al. Continuous versus intermittent infusion of vancomycin in severe Staphylococcal infections: prospective multicenter randomized study. Antimicrob Agents Chemother 2001; 45: 2460-2467
  • 255 Awad SS, Rodriguez AH, Chuang YC. et al. A phase 3 randomized double-blind comparison of ceftobiprole medocaril versus ceftazidime plus linezolid for the treatment of hospital-acquired pneumonia. Clin Infect Dis Off Publ Infect Dis Soc Am 2014; 59: 51-61
  • 256 Burgin DJ, Liu R, Hsieh RC. et al. Investigational agents for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia: progress in clinical trials. Expert Opin Investig Drugs 2022; 31: 263-279
  • 257 Sieger B, Berman SJ, Geckler RW. et al. Empiric treatment of hospital-acquired lower respiratory tract infections with meropenem or ceftazidime with tobramycin: a randomized study. Meropenem Lower Respiratory Infection Group. Crit Care Med 1997; 25: 1663-16670
  • 258 Jaccard C, Troillet N, Harbarth S. et al. Prospective randomized comparison of imipenem-cilastatin and piperacillin-tazobactam in nosocomial pneumonia or peritonitis. Antimicrob Agents Chemother 1998; 42: 2966-2972
  • 259 Hartenauer U, Weilemann LS, Bodmann KF. et al. Comparative clinical trial of ceftazidime and imipenem/cilastatin in patients with severe nosocomial pneumonias and septicaemias. J Hosp Infect 1990; 15: 61-64
  • 260 Norrby SR, Finch RG, Glauser M. Monotherapy in serious hospital-acquired infections: a clinical trial of ceftazidime versus imipenem/cilastatin. European Study Group. J Antimicrob Chemother 1993; 31: 927-937
  • 261 Fink MP, Snydman DR, Niederman MS. et al. Treatment of severe pneumonia in hospitalized patients: results of a multicenter, randomized, double-blind trial comparing intravenous ciprofloxacin with imipenem-cilastatin. The Severe Pneumonia Study Group. Antimicrob Agents Chemother 1994; 38: 547-557
  • 262 Luyt CE, Aubry A, Lu Q. et al. Imipenem, meropenem, or doripenem to treat patients with Pseudomonas aeruginosa ventilator-associated pneumonia. Antimicrob Agents Chemother 2014; 58: 1372-1380
  • 263 Eljaaly K, Bidell MR, Gandhi RG. et al. Colistin Nephrotoxicity: Meta-Analysis of Randomized Controlled Trials. Open Forum Infect Dis 2021; 8: ofab026
  • 264 Tamma PD, Aitken SL, Bonomo RA. et al. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-Lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin Infect Dis Off Publ Infect Dis Soc Am 2022; 74: 2089-2114
  • 265 Bassetti M, Righi E, Fasce R. et al. Efficacy of ertapenem in the treatment of early ventilator-associated pneumonia caused by extended-spectrum beta-lactamase-producing organisms in an intensive care unit. J Antimicrob Chemother 2007; 60: 433-435
  • 266 Paterson DL, Ko WC, Von Gottberg A. et al. Outcome of cephalosporin treatment for serious infections due to apparently susceptible organisms producing extended-spectrum beta-lactamases: implications for the clinical microbiology laboratory. J Clin Microbiol 2001; 39: 2206-2212
  • 267 Henderson A, Paterson DL, Chatfield MD. et al. Association Between Minimum Inhibitory Concentration, Beta-lactamase Genes and Mortality for Patients Treated With Piperacillin/Tazobactam or Meropenem From the MERINO Study. Clin Infect Dis Off Publ Infect Dis Soc Am 2021; 73: e3842-e3850
  • 268 Herrmann L, Kimmig A, Rödel J. et al. Early Treatment Outcomes for Bloodstream Infections Caused by Potential AmpC Beta-Lactamase-Producing Enterobacterales with Focus on Piperacillin/Tazobactam: A Retrospective Cohort Study. Antibiot Basel Switz 2021; 10: 665
  • 269 Harris PNA, Wei JY, Shen AW. et al. Carbapenems versus alternative antibiotics for the treatment of bloodstream infections caused by Enterobacter, Citrobacter or Serratia species: a systematic review with meta-analysis. J Antimicrob Chemother 2016; 71: 296-306
  • 270 Timsit JF, Huntington JA, Wunderink RG. et al. Ceftolozane/tazobactam versus meropenem in patients with ventilated hospital-acquired bacterial pneumonia: subset analysis of the ASPECT-NP randomized, controlled phase 3 trial. Crit Care Lond Engl 2021; 25: 290
  • 271 Torres A, Zhong N, Pachl J. et al. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): a randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect Dis 2018; 18: 285-295
  • 272 Bassetti M, Echols R, Matsunaga Y. et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect Dis 2021; 21: 226-240
  • 273 Tamma PD, Aitken SL, Bonomo RA. et al. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin Infect Dis Off Publ Infect Dis Soc Am 2022; 75: 187-212
  • 274 Paul M, Carrara E, Retamar P. et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 2022; 28: 521-547
  • 275 Bassetti M, Giacobbe DR, Patel N. et al. Efficacy and Safety of Meropenem-Vaborbactam Versus Best Available Therapy for the Treatment of Carbapenem-Resistant Enterobacteriaceae Infections in Patients Without Prior Antimicrobial Failure: A Post Hoc Analysis. Adv Ther 2019; 36: 1771-1777
  • 276 Wadl M, Heckenbach K, Noll I. et al. Increasing occurrence of multidrug-resistance in Acinetobacter baumannii isolates from four German University Hospitals, 2002-2006. Infection 2010; 38: 47-51
  • 277 Durante-Mangoni E, Signoriello G, Andini R. et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter, randomized clinical trial. Clin Infect Dis Off Publ Infect Dis Soc Am 2013; 57: 349-358
  • 278 Huang C, Chen I, Tang T. Colistin Monotherapy versus Colistin plus Meropenem Combination Therapy for the Treatment of Multidrug-Resistant Acinetobacter baumannii Infection: A Meta-Analysis. J Clin Med 2022; 11: 3239
  • 279 Looney WJ, Narita M, Mühlemann K. Stenotrophomonas maltophilia: an emerging opportunist human pathogen. Lancet Infect Dis 2009; 9: 312-323
  • 280 Blanquer D, De Otero J, Padilla E. et al. Tigecycline for treatment of nosocomial-acquired pneumonia possibly caused by multi-drug resistant strains of Stenotrophomonas maltophilia. J Chemother Florence Italy 2008; 20: 761-763
  • 281 Póvoa P, Martin-Loeches I, Ramirez P. et al. Biomarkers kinetics in the assessment of ventilator-associated pneumonia response to antibiotics – results from the BioVAP study. J Crit Care 2017; 41: 91-97
  • 282 Ceccato A, Torres A. Defining Clinical and Microbiological Nonresponse in Ventilator-Associated Pneumonia. Semin Respir Crit Care Med 2022; 43: 229-233
  • 283 Shorr AF, Cook D, Jiang X. et al. Correlates of clinical failure in ventilator-associated pneumonia: insights from a large, randomized trial. J Crit Care 2008; 23: 64-73
  • 284 El-Ebiary M, Torres A, González J. et al. Quantitative Cultures of Endotracheal Aspirates for the Diagnosis of Ventilator-associated Pneumonia. Am Rev Respir Dis 1993; 148: 1552-1557
  • 285 El-Solh AA, Aquilina AT, Dhillon RS. et al. Impact of Invasive Strategy on Management of Antimicrobial Treatment Failure in Institutionalized Older People with Severe Pneumonia. Am J Respir Crit Care Med 2002; 166: 1038-1043
  • 286 Wu CL, Yang DI, Wang NY. et al. Quantitative Culture of Endotracheal Aspirates in the Diagnosis of Ventilator-Associated Pneumonia in Patients With Treatment Failure. Chest 2002; 122: 662-668
  • 287 Hagel S, Scherag A, Schuierer L. et al. Effect of antiviral therapy on the outcomes of mechanically ventilated patients with herpes simplex virus detected in the respiratory tract: a systematic review and meta-analysis. Crit Care Lond Engl 2020; 24: 584
  • 288 Luyt CE, Forel JM, Hajage D. et al. Acyclovir for Mechanically Ventilated Patients With Herpes Simplex Virus Oropharyngeal Reactivation: A Randomized Clinical Trial. JAMA Intern Med 2020; 180: 263-272
  • 289 Papazian L, Jaber S, Hraiech S. et al. Preemptive ganciclovir for mechanically ventilated patients with cytomegalovirus reactivation. Ann Intensive Care 2021; 11: 33
  • 290 Ambaras Khan R, Aziz Z. Antibiotic de-escalation in patients with pneumonia in the intensive care unit: A systematic review and meta-analysis. Int J Clin Pract 2018; 72: e13245
  • 291 Davey P, Marwick CA, Scott CL. et al. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst Rev 2017; 2: CD003543
  • 292 Kaki R, Elligsen M, Walker S. et al. Impact of antimicrobial stewardship in critical care: a systematic review. J Antimicrob Chemother 2011; 66: 1223-1230
  • 293 Monmaturapoj T, Scott J, Smith P. et al. Pharmacist-led education-based antimicrobial stewardship interventions and their effect on antimicrobial use in hospital inpatients: a systematic review and narrative synthesis. J Hosp Infect 2021; 115: 93-116
  • 294 Paul M, Dickstein Y, Raz-Pasteur A. Antibiotic de-escalation for bloodstream infections and pneumonia: systematic review and meta-analysis. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 2016; 22: 960-967
  • 295 Schuts EC, Hulscher MEJL, Mouton JW. et al. Current evidence on hospital antimicrobial stewardship objectives: a systematic review and meta-analysis. Lancet Infect Dis 2016; 16: 847-856
  • 296 Rattanaumpawan P, Boonyasiri A, Vong S. et al. Systematic review of electronic surveillance of infectious diseases with emphasis on antimicrobial resistance surveillance in resource-limited settings. Am J Infect Control 2018; 46: 139-146
  • 297 Ridgway JP, Robicsek A, Shah N. et al. A Randomized Controlled Trial of an Electronic Clinical Decision Support Tool for Inpatient Antimicrobial Stewardship. Clin Infect Dis Off Publ Infect Dis Soc Am 2021; 72: e265-e271
  • 298 de With K. S3-Leitlinie Strategien zur Sicherung rationaler Antibiotika-Anwendung im Krankenhaus. AWMF-Registernummer 092/001. 2018
  • 299 Monnier AA, Schouten J, LeMaréchal M. et al. Quality indicators for responsible antibiotic use in the inpatient setting: a systematic review followed by an international multidisciplinary consensus procedure. J Antimicrob Chemother 2018; 73 (Suppl. 06) vi30-vi39
  • 300 Schouten JA, Hulscher MEJL, Wollersheim H. et al. Quality of antibiotic use for lower respiratory tract infections at hospitals: (how) can we measure it?. Clin Infect Dis Off Publ Infect Dis Soc Am 2005; 41: 450-460
  • 301 Shenoy ES, Macy E, Rowe T. et al. Evaluation and Management of Penicillin Allergy: A Review. JAMA 2019; 321: 188-199
  • 302 Jacobs MW, Bremmer DN, Shively NR. et al. Analysis of a beta-lactam allergy assessment protocol challenging diverse reported allergies managed by an antimicrobial stewardship program. Antimicrob Steward Healthc Epidemiol ASHE 2023; 3: e153