RSS-Feed abonnieren
DOI: 10.1055/a-2543-3305
Assessing parotid gland tumor perfusion with a new imaging biomarker DDVD (diffusion-derived vessel density): promising initial results
Beurteilung der Durchblutung von Ohrspeicheldrüsentumoren mit einem neuen bildgebenden Biomarker, DDVD (diffusionsabgeleitete „Gefäßdichte“): erste vielversprechende Ergebnisse Gefördert durch: Hong Kong GRF No. 14112521Gefördert durch: The research was conducted CUHK MRI Facility, which is jointly funded by Kai Chong Tong, HKSAR Research Matching Grant Scheme and the Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong.

Abstract
Purpose
DDVD (diffusion-derived vessel density) is an MRI surrogate of the area of micro-vessels per unit tissue area. DDVD is calculated according to: DDVD(b0b20) = Sb0/ROIarea0 – Sb20/ROIarea20, where Sb0 and Sb20 refer to the tissue signal when b is 0 or 20 s/mm2. This study applied DDVD to assess the perfusion of parotid gland tumors.
Materials and Methods
MRI was performed at 3.0T. Diffusion-weighted images with b-values of 0, 20, 1000 s/mm2 were acquired for 24 pleomorphic adenomas (PA), 16 Warthin’s tumors (WT), and 14 malignant tumors (MT). DDVDr was DDVD of the tumor divided by DDVD of tumor-free parotid gland tissue. A systematic literature search was conducted for parotid gland tumor perfusion imaging studies. Perfusion parameters of PA, MT, and WT were normalized by PA value, and thus the ratio for PA value was assumed to be 1. The ratio results of MT DDVDr and WT DDVDr further normalized by PA DDVDr were compared with the literature results. In addition, the ADC (apparent diffusion coefficient) was calculated with b=0, 1000 s/mm2 images.
Results
Most of the tumors were hyper-vascular relative to native parotid gland tissue with DDVDr >1, with PA, MT, and WT having mean DDVDr values of 1.753±0.462, 2.731±2.254, and 4.324 ±3.203, respectively. DDVDr ratios of MT/PA and WT/PA agreed with the literature perfusion results derived with non-DWI methods, particularly consistent with CT perfusion blood volume results. PA, MT, and WT had ADC values of 1.485 ±0.36, 0.969± 0.194, and 0.772± 0.070 (×10-3 mm2/s), respectively. WT had very high DDVDr and low ADC, while PA had moderately high DDVDr and very high ADC. Most of the MTs had moderately high DDVDr and low ADC. A combination of ADC and DDVDr can largely differentiate between PA and WT.
Conclusion
DDVD results approximately agree with parotid gland perfusion imaging literature data. A combination of DDVD and ADC may support parotid gland tumor tissue characterization.
Key Points
-
As a straightforward diffusion MRI biomarker, DDVD can be used to assess parotid gland tumor perfusion.
-
Warthin’s tumors have very high DDVD and low ADC.
-
Pleomorphic adenomas have moderately high DDVDr and very high ADC.
-
A combination of ADC and DDVDr can largely differentiate between pleomorphic adenoma and Warthin’s tumor.
Citation Format
-
Yao D, King AD, Zhang R etal. Assessing parotid gland tumor perfusion with a new imaging biomarker DDVD (diffusion-derived vessel density): promising initial results. Rofo 2024; DOI 10.1055/a-2543-3305
Zusammenfassung
Zweck
DDVD (diffusion-derived “vessel density” ) ist ein MRT-Ersatzwert für die Fläche der Mikrogefäße pro Gewebeflächeneinheit. DDVD wird wie folgt berechnet: DDVD(b0b20) = Sb0/ROIarea0 – Sb20/ROIarea20, wobei sich Sb0 und Sb20 auf das Gewebesignal beziehen, wenn b 0 oder 20 s/mm2 beträgt. In dieser Studie wurde DDVD zur Beurteilung der Durchblutung von Ohrspeicheldrüsentumoren eingesetzt.
Materialien und Methoden
Die MRT wurde bei 3,0 T durchgeführt. Diffusionsgewichtete Bilder mit b-Werten von 0, 20, 1000 s/mm2 wurden von 24 pleomorphen Adenomen (PA), 16 Warthin-Tumoren (WT) und 14 malignen Tumoren (MT) aufgenommen. DDVDr war DDVD des Tumors geteilt durch DDVD des tumorfreien Ohrspeicheldrüsengewebes. Es wurde eine systematische Literaturrecherche nach Studien zur Perfusionsbildgebung von Ohrspeicheldrüsentumoren durchgeführt. Die Perfusionsparameter von PA, MT und WT wurden durch die PA-Messung normalisiert, und daher wurde das Verhältnis für die PA-Messung als 1 angenommen. Die Verhältnisergebnisse von MT DDVDr und WT DDVDr, weiter normalisiert durch PA DDVDr, wurden mit Literaturergebnissen verglichen. Zusätzlich wurde der ADC (scheinbarer Diffusionskoeffizient) mit Bildern mit b=0, 1000 s/mm2 berechnet.
Ergebnisse
Die meisten Tumoren waren im Vergleich zum nativen Ohrspeicheldrüsengewebe hypervaskulär mit DDVDr >1, wobei PA, MT und WT mittlere DDVDr-Werte von 1,753 ± 0,462, 2,731 ± 2,254 bzw. 4,324 ± 3,203 aufwiesen. Die DDVDr-Verhältnisse von MT/PA und WT/PA stimmten mit in der Literatur angegebenen Perfusionsergebnissen überein, die mit Nicht-DWI-Methoden ermittelt wurden, und waren insbesondere mit den CT-Perfusionsblutvolumenergebnissen konsistent. PA, MT und WT hatten ADC-Werte von 1,485 ± 0,36, 0,969 ± 0,194 bzw. 0,772 ± 0,070 (× 10-3 mm2/s). WT hatte sehr hohe DDVDr und niedrige ADC, während PA mäßig hohe DDVDr und sehr hohe ADC hatte. Die meisten MT hatten mäßig hohe DDVDr und niedrige ADC. Eine Kombination aus ADC und DDVDr kann PA und WT weitgehend trennen.
Schlussfolgerung
Die DDVD-Ergebnisse stimmen in etwa mit den Literaturdaten zur Ohrspeicheldrüsen-Perfusionsbildgebung überein. Eine Kombination aus DDVD und ADC kann die Charakterisierung des Ohrspeicheldrüsentumorgewebes unterstützen.
Kernaussagen
-
Als unkomplizierter Diffusions-MRT-Biomarker kann DDVD zur Beurteilung der Durchblutung von Ohrspeicheldrüsentumoren verwendet werden.
-
Warthin-Tumoren haben einen sehr hohen DDVD und einen niedrigen ADC.
-
Pleomorphe Adenome haben einen mäßig hohen DDVDr und einen sehr hohen ADC.
-
Eine Kombination aus ADC und DDVDr kann pleomorphe Adenome und Warthin-Tumoren weitgehend voneinander unterscheiden.
Keywords
parotid gland tumors - Warthin’s tumor - perfusion - pleomorphic adenoma - diffusion-weighted imagingPublikationsverlauf
Eingereicht: 14. Oktober 2024
Angenommen nach Revision: 17. Februar 2025
Artikel online veröffentlicht:
13. März 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Renehan A, Gleave EN, Hancock BD. et al. Long-term follow-up of over 1000 patients with salivary gland tumours treated in a single centre. Br J Surg 1996; 83: 1750-4
- 2 Zhan KY, Khaja SF, Flack AB. et al. Benign Parotid Tumors. Otolaryngol Clin North Am 2016; 4: 327-42
- 3 Wáng YXJ. Living tissue intravoxel incoherent motion (IVIM) diffusion MR analysis without b=0 image: an example for liver fibrosis evaluation. Quant Imaging Med Surg 2019; 9: 127-133
- 4 Huang H, Zheng CJ, Wang LF. et al. Age and gender dependence of liver diffusion parameters and the possibility that intravoxel incoherent motion modeling of the perfusion component is constrained by the diffusion component. NMR Biomed 2021; 34: e4449
- 5 Xiao BH, Huang H, Wang LF. et al. Diffusion MRI Derived per Area Vessel Density as a Surrogate Biomarker for Detecting Viral Hepatitis B-Induced Liver Fibrosis: A Proof-of-Concept Study. SLAS Technol 2020; 25: 474-483
- 6 Zheng CJ, Huang H, Xiao BH. et al. Spleen in viral Hepatitis-B liver fibrosis patients may have a reduced level of per unit microcirculation: non-invasive diffusion MRI evidence with a surrogate marker. SLAS Technol 2022; 27: 187-194
- 7 Li XM, Yao DQ, Quan XY. et al. Perfusion of hepatocellular carcinomas measured by diffusion-derived vessel density biomarker: Higher hepatocellular carcinoma perfusion than earlier intravoxel incoherent motion reports. NMR Biomed 2024; 37: e5125
- 8 Lu BL, Yao DQ, Wáng YXJ. et al. Higher perfusion of rectum carcinoma relative to tumor-free rectal wall: quantification by a new imaging biomarker diffusion-derived vessel density (DDVD). Quant Imaging Med Surg 2024; 14: 3264-3274
- 9 He J, Chen C, Xu L. et al. Diffusion-Derived Vessel Density Computed From a Simplified Intravoxel Incoherent Motion Imaging Protocol in Pregnancies Complicated by Early Preeclampsia: A Novel Biomarker of Placental Dysfunction. Hypertension 2023; 80: 1658-1667
- 10 Lu T, Wang L, Li M. et al. Wang Y, Diffusion-derived vessel density (DDVD) computed from a simple diffusion MRI protocol as a biomarker of placental blood circulation in patients with placenta accreta spectrum disorders: A proof-of-concept study. Magn Reson Imaging 2024; 109: 180-186
- 11 Hu GW, Li CY, Zhang G. et al. Diagnosis of liver hemangioma using magnetic resonance diffusion-derived vessel density (DDVD) pixelwise map: a preliminary descriptive study. Quant Imaging Med Surg 2024; 14: 8064-8082
- 12 Chen JQ, Li CY, Wang W. et al. Diffusion-derived vessel density (DDVD) for penumbra delineation in acute ischemic stroke: initial proof-of-concept results using single NEX DWI. Quant Imaging Med Surg 2024; 14: 9533-9542
- 13 Dong Y, Lei GW, Wang SW. et al. Diagnostic value of CT perfusion imaging for parotid neoplasms. Dentomaxillofac Radiol 2014; 43
- 14 Niazi M, Mohammadzadeh M, Aghazadeh K. et al. Perfusion Computed Tomography Scan Imaging in Differentiation of Benign from Malignant Parotid Lesions. Int Arch Otorhinolaryngol 2020; 24: e160-e169
- 15 Xu Z, Rong F, Yu T. et al. Pleomorphic adenoma versus Warthin tumor of the parotid gland: Diagnostic value of CT perfusion imaging and its pathologic explanation. Journal of Tumor 2016; 4: 419-425
- 16 Zhao L, Mao Y, Mu J. et al. The diagnostic value of Superb Microvascular Imaging in identifying benign tumors of parotid gland. BMC Med Imaging 2020; 20: 107
- 17 Yamamoto T, Kimura H, Hayashi K. et al. Pseudo-continuous arterial spin labeling MR images in Warthin tumors and pleomorphic adenomas of the parotid gland: qualitative and quantitative analyses and their correlation with histopathologic and DWI and dynamic contrast enhanced MRI findings. Neuroradiology 2018; 60: 803-812
- 18 Faur AC, Lazar E, Cornianu M. Vascular endothelial growth factor (VEGF) expression and microvascular density in salivary gland tumours. APMIS 2014; 122: 418-26
- 19 Teymoortash A, Schrader C, Shimoda H. et al. Evidence of lymphangiogenesis in Warthin's tumor of the parotid gland. Oral Oncol 2007; 43: 614-8
- 20 Markiet K, Glinska A, Nowicki T. et al. Feasibility of Intravoxel Incoherent Motion (IVIM) and Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) in Differentiation of Benign Parotid Gland Tumors. Biology (Basel) 2022; 11: 399
- 21 Ma G, Xu XQ, Zhu LN. et al. Intravoxel Incoherent Motion Magnetic Resonance Imaging for Assessing Parotid Gland Tumors: Correlation and Comparison with Arterial Spin Labeling Imaging. Korean J Radiol 2021; 22: 243-252
- 22 Matsumiya-Matsumoto Y, Morita Y, Uzawa N. Pleomorphic Adenoma of the Salivary Glands and Epithelial-Mesenchymal Transition. J Clin Med 2022; 11: 4210
- 23 Wáng YXJ, Ma FZ. A tri-phasic relationship between T2 relaxation time and magnetic resonance imaging (MRI)-derived apparent diffusion coefficient (ADC). Quant Imaging Med Surg 2023; 13: 8873-8880
- 24 Wáng YXJ. Natural course of apparent diffusion coefficient (ADC) change after brain ischemic stroke: an alternative explanation by the triphasic relationship between T2 and ADC. Quant Imaging Med Surg 2024; 14: 9848-9855
- 25 Baohong W, Jing Z, Zanxia Z. et al. T2 mapping and readout segmentation of long variable echo-train diffusion-weighted imaging for the differentiation of parotid gland tumors. Eur J Radiol 2022; 151
- 26 Wáng YXJ. The very low magnetic resonance imaging apparent diffusion coefficient (ADC) measure of abscess is likely due to pus's specific T2 relaxation time. Quant Imaging Med Surg 2023; 13: 8881-8885
- 27 Zhang R, King AD, Wong LM. et al. Discriminating between benign and malignant salivary gland tumors using diffusion-weighted imaging and intravoxel incoherent motion at 3 Tesla. Diagn Interv Imaging 2023; 104: 67-75
- 28 Ma FZ, Wáng YXJ. T2 relaxation time elongation of hepatocellular carcinoma relative to native liver tissue leads to an underestimation of perfusion fraction estimated by standard intravoxel incoherent motion MR imaging. Quant Imaging Med Surg 2024; 14: 1316-1322
- 29 Kato H, Kanematsu M, Watanabe H. et al. Perfusion imaging of parotid gland tumours: usefulness of arterial spin labeling for differentiating Warthin's tumours. Eur Radiol 2015; 25: 3247-54
- 30 Razek AAKA. Multi-parametric MR imaging using pseudo-continuous arterial-spin labeling and diffusion-weighted MR imaging in differentiating subtypes of parotid tumors. Magn Reson Imaging 2019; 63: 55-59