CC BY 4.0 · Klin Monbl Augenheilkd 2025; 242(04): 515-520
DOI: 10.1055/a-2543-4330
Übersicht

Stakeholder Attitudes on AI Integration in Ophthalmology

Einstellungen der Stakeholder zur KI-Integration in der Ophthalmologie
1   Department of Ophthalmology, Stadtspital Zurich Triemli, Zurich, Switzerland
2   Spross Research Institute, Zurich, Switzerland
,
Ferhat Turgut
1   Department of Ophthalmology, Stadtspital Zurich Triemli, Zurich, Switzerland
2   Spross Research Institute, Zurich, Switzerland
3   Ophthalmology, Gutblick, Pfäffikon, Switzerland
,
Matthias Becker
1   Department of Ophthalmology, Stadtspital Zurich Triemli, Zurich, Switzerland
2   Spross Research Institute, Zurich, Switzerland
4   Department of Ophthalmology, University of Heidelberg, Germany
,
Delia DeBuc
5   Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
,
1   Department of Ophthalmology, Stadtspital Zurich Triemli, Zurich, Switzerland
2   Spross Research Institute, Zurich, Switzerland
6   Department of Ophthalmology, Semmelweis University, Budapest, Hungary
› Institutsangaben

Abstract

Artificial intelligence (AI) is gaining widespread traction in ophthalmology, with multiple screening and diagnostic tools already being approved by U. S. and EU authorities. However, the adoption of these tools among medical professionals and their acceptance among patients is still questionable. This narrative review analyses the current literature on stakeholder perspectives on the integration of AI in ophthalmology, with a focus on comparing views across different global healthcare contexts. A PubMed search was conducted for original research articles published between January 1, 2015 and August 31, 2024. The analysis revealed different levels of acceptance for different AI applications among different stakeholder groups. Ophthalmologists and optometrists generally showed positive attitudes toward AI as an adjunct tool, while patients expressed mixed views, appreciating potential benefits while expressing concerns about a lack of transparency in the integration of AI into healthcare. This review reveals a complex landscape of stakeholder perspectives on AI in ophthalmology, highlighting the need for tailored approaches to AI implementation that address specific concerns and consider different healthcare contexts. The findings underscore the importance of collaborative efforts to develop context-specific, effective AI solutions in ophthalmology.

Zusammenfassung

Der Einsatz Künstlicher Intelligenz (KI) in der Augenheilkunde erfährt eine zunehmende Beliebtheit. Mehrere Screening- und Diagnoseinstrumente wurden bereits von den US-amerikanischen und europäischen Behörden zugelassen. Die Akzeptanz dieser Anwendungen durch das medizinische Fachpersonal und die Patienten ist jedoch noch unklar. In dieser Übersichtsarbeit wird die aktuelle Literatur zu den Perspektiven der Stakeholder bez. der Integration von KI in die Augenheilkunde analysiert. Es wurde eine PubMed-Suche nach Original-Forschungsartikeln durchgeführt, die zwischen dem 1. Januar 2015 und dem 31. August 2024 veröffentlicht wurden. Die Analyse ergab eine unterschiedliche Akzeptanz verschiedener KI-Anwendungen bei den verschiedenen Interessengruppen. Augenärzte und Optometristen zeigten eine generell positive Einstellung gegenüber KI als ergänzendes Instrument, während Patienten eine gemischte Meinung äußerten, indem sie einerseits die potenziellen Vorteile schätzten, andererseits aber auch Bedenken hinsichtlich der mangelnden Transparenz bei der Integration von KI in die Gesundheitsversorgung äußerten. Dieser Überblick zeigt eine komplexe Landschaft von Stakeholder-Perspektiven zu KI in der Augenheilkunde und unterstreicht die Notwendigkeit maßgeschneiderter Ansätze zur Implementierung von KI, die auf spezifische Bedenken eingehen und unterschiedliche Kontexte im Gesundheitswesen berücksichtigen. Die Ergebnisse unterstreichen die Bedeutung gemeinsamer Anstrengungen zur Entwicklung kontextspezifischer, effektiver KI-Lösungen in der Augenheilkunde.



Publikationsverlauf

Eingereicht: 27. Oktober 2024

Angenommen: 06. Januar 2025

Artikel online veröffentlicht:
16. April 2025

© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 1 Al Kuwaiti A, Nazer K, Al-Reedy A. et al. A Review of the Role of Artificial Intelligence in Healthcare. J Pers Med 2023; 13: 951
  • 2 Daich Varela M, Sen S, De Guimaraes TAC. et al. Artificial intelligence in retinal disease: clinical application, challenges, and future directions. Graefes Arch Clin Exp Ophthalmol 2023; 261: 3283-3297
  • 3 Lim JI, Regillo CD, Sadda SR. et al. Artificial Intelligence Detection of Diabetic Retinopathy: Subgroup Comparison of the EyeArt System with Ophthalmologistsʼ Dilated Examinations. Ophthalmol Sci 2022; 3: 100228
  • 4 Scott IA, Carter SM, Coiera E. Exploring stakeholder attitudes towards AI in clinical practice. BMJ Health Care Inform 2021; 28: e100450
  • 5 Nakayama LF, Kras A, Ribeiro LZ. et al. Global disparity bias in ophthalmology artificial intelligence applications. BMJ Health Care Inform 2022; 29: e100470
  • 6 Gargeya R, Leng T. Automated Identification of Diabetic Retinopathy Using Deep Learning. Ophthalmology 2017; 124: 962-969
  • 7 Wan S, Liang Y, Zhang Y. Deep convolutional neural networks for diabetic retinopathy detection by image classification. Comp Elec Eng 2018; 72: 274-282
  • 8 Grzybowski A, Peeters F, Barão RC. et al. Evaluating the efficacy of AI systems in diabetic retinopathy detection: A comparative analysis of Mona DR and IDx-DR. Acta Ophthalmol 2024;
  • 9 De Fauw J, Ledsam JR, Romera-Paredes B. et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med 2018; 24: 1342-1350
  • 10 AlShawabkeh M, AlRyalat SA, Al Bdour M. et al. The utilization of artificial intelligence in glaucoma: diagnosis versus screening. Front Ophthalmol (Lausanne) 2024; 4: 1368081
  • 11 [Anonymous] IOL Formulas: Using AI to Improve Accuracy. American Academy of Ophthalmology 2019. https://www.aao.org/eyenet/article/iol-formulas-using-ai-to-improve-accuracy Accesssed 20.10.2024
  • 12 Stopyra W, Cooke DL, Grzybowski A. A Review of Intraocular Lens Power Calculation Formulas Based on Artificial Intelligence. J Clin Med 2024; 13: 498
  • 13 Scruggs BA, Chan RVP, Kalpathy-Cramer J. et al. Artificial Intelligence in Retinopathy of Prematurity Diagnosis. Transl Vis Sci Technol 2020; 9: 5
  • 14 Iddir SP, Love J, Ma JS. et al. Predicting Malignant Transformation of Choroidal Nevi Using Machine Learning. Res Sq [Preprint] 2023;
  • 15 Gunasekeran DV, Zheng F, Lim GYS. et al. Acceptance and Perception of Artificial Intelligence Usability in Eye Care (APPRAISE) for Ophthalmologists: A Multinational Perspective. Front Med (Lausanne) 2022; 9: 875242
  • 16 Scheetz J, Rothschild P, McGuinness M. et al. A survey of clinicians on the use of artificial intelligence in ophthalmology, dermatology, radiology and radiation oncology. Sci Rep 2021; 11: 5193
  • 17 Hogg HDJ, Al-Zubaidy M. Technology Enhanced Macular Services Study Reference Group. et al. Stakeholder Perspectives of Clinical Artificial Intelligence Implementation: Systematic Review of Qualitative Evidence. J Med Internet Res 2023; 25: e39742
  • 18 Valikodath NG, Al-Khaled T, Cole E. et al. Evaluation of pediatric ophthalmologistsʼ perspectives of artificial intelligence in ophthalmology. J AAPOS 2021; 25: 164.e1-164.e5
  • 19 Scanzera AC, Shorter E, Kinnaird C. et al. Optometristʼs perspectives of Artificial Intelligence in eye care. J Optom 2022; 15 (Suppl. 1) S91-S97
  • 20 Ho S, Doig GS, Ly A. Attitudes of optometrists towards artificial intelligence for the diagnosis of retinal disease: A cross-sectional mail-out survey. Ophthalmic Physiol Opt 2022; 42: 1170-1179
  • 21 Constantin A, Atkinson M, Bernabeu MO. et al. Optometristsʼ Perspectives Regarding Artificial Intelligence Aids and Contributing Retinal Images to a Repository: Web-Based Interview Study. JMIR Human Factors 2023; 10: e40887
  • 22 Idogen OS. The perspectives of eye care professionals on the integration of artificial intelligence in eye care practices: A systematic review. Artif Intell Health 2024; 1: 66-75
  • 23 Wood EA, Ange BL, Miller DD. Are We Ready to Integrate Artificial Intelligence Literacy into Medical School Curriculum: Students and Faculty Survey. J Med Educ Curric Dev 2021; 8
  • 24 Misra R, Keane PA, Hogg HDJ. How should we train clinicians for artificial intelligence in healthcare?. Future Healthc J 2024; 11: 100162
  • 25 Valikodath NG, Cole E, Ting DSW. et al. Impact of Artificial Intelligence on Medical Education in Ophthalmology. Transl Vis Sci Technol 2021; 10: 14
  • 26 Singh RP, Hom GL, Abramoff MD. et al. Current Challenges and Barriers to Real-World Artificial Intelligence Adoption for the Healthcare System, Provider, and the Patient. Transl Vis Sci Technol 2020; 9: 45
  • 27 Ruamviboonsuk P, Chantra S, Seresirikachorn K. Economic Evaluations of Artificial Intelligence in Ophthalmology. Asia Pac J Ophthalmol (Phila) 2021; 10: 307-316
  • 28 Zwingelberg SB, Mercieca K, Elksne E. et al. [Attitude of patients to possible telemedicine in ophthalmology: Survey by questionnaire in patients with glaucoma]. Ophthalmologe 2022; 119: 374-380
  • 29 Cappellani F, Card KR, Shields CL. et al. Reliability and accuracy of artificial intelligence ChatGPT in providing information on ophthalmic diseases and management to patients. Eye (Lond) 2024; 38: 1368-1373
  • 30 Khullar D, Casalino LP, Qian Y. et al. Perspectives of Patients About Artificial Intelligence in Health Care. JAMA Network Open 2022; 5: e2210309
  • 31 Mathenge W, Whitestone N, Nkurikiye J. et al. Impact of Artificial Intelligence Assessment of Diabetic Retinopathy on Referral Service Uptake in a Low-Resource Setting: The RAIDERS Randomized Trial. Ophthalmol Sci 2022; 2: 100168
  • 32 Wolff J, Pauling J, Keck A. et al. The Economic Impact of Artificial Intelligence in Health Care: Systematic Review. J Med Internet Res 2020; 22: e16866
  • 33 Campbell JP, Mathenge C, Cherwek H. et al. Artificial Intelligence to Reduce Ocular Health Disparities: Moving From Concept to Implementation. Transl Vis Sci Technol 2021; 10: 19