Subscribe to RSS

DOI: 10.1055/a-2548-0108
Molecular Landscape and Treatment Paradigms of Hepatocellular and Cholangiocarcinoma: A Multinational Review
Molekulare Landschaft und Therapieparadigmen bei hepatozellulärem Karzinom und Cholangiokarzinom: Eine multinationale Übersichtsarbeit
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) represent the most prevalent primary liver cancers and pose significant challenges in oncology. While their etiology and incidence vary globally, the molecular landscape of these tumors is increasingly understood, offering new opportunities for precision medicine. In this joint multinational review, we present a comprehensive analysis of the key molecular pathways involved in the pathogenesis of HCC and CCA, highlighting actionable targets for emerging therapies. Recent advances in molecular diagnostics have significantly influenced treatment paradigms for both cancers. In HCC, while genetic alterations have not yet led to established diagnostic or therapeutic applications, targeting vascular endothelial growth factor (VEGF), immune checkpoints, and tyrosine kinase pathways has demonstrated considerable therapeutic potential. In CCA, genetic profiling has uncovered actionable alterations, such as FGFR2 fusions and IDH1 mutations, driving the development of targeted therapies. The growing complexity of precision oncology underscores the need for standardized molecular testing and streamlined diagnostic workflows to ensure timely and effective treatment. This review also emphasizes the importance of collaborative efforts between clinicians, pathologists, and oncologists to optimize outcomes. By synthesizing the latest molecular insights and treatment trends, this review provides a valuable resource to guide the personalized management of HCC and CCA.
Zusammenfassung
Das hepatozelluläre Karzinom (HCC) und das Cholangiokarzinom (CCA) gehören zu den häufigsten primären Leberkarzinomen und stellen eine erhebliche onkologische Herausforderung dar. Während Ätiologie und Inzidenz weltweit unterschiedlich sind, liefert ein besseres Verständnis der molekularen Grundlagen dieser Tumoren neue Ansätze für die Präzisionsmedizin. In dieser gemeinsamen multinationalen Übersichtsarbeit analysieren wir die zentralen molekularen Signalwege, die an der Pathogenese von HCC und CCA beteiligt sind, und beleuchten gezielt nutzbare Therapieansätze. Jüngste Fortschritte in der molekularen Diagnostik haben die Behandlungsstrategien für beide Tumorarten verändert. Beim HCC haben genetische Alterationen bislang zwar noch keinen festen Platz in der Diagnostik oder Therapie, jedoch zeigt die gezielte Hemmung des vaskulären endothelialen Wachstumsfaktors (VEGF), von Immun-Checkpoints und Tyrosinkinase-Signalwegen vielversprechendes therapeutisches Potenzial. Beim CCA ermöglicht die genetische Analyse die Identifikation nutzbarer Mutationen wie FGFR2-Fusionen und IDH1-Mutationen, die gezielte Therapien vorantreiben. Die zunehmende Komplexität der Präzisionsonkologie erfordert standardisierte molekulare Tests und optimierte Diagnostikabläufe, um eine rechtzeitige und effektive Behandlung sicherzustellen. Diese Übersichtsarbeit betont die Bedeutung einer interdisziplinären Zusammenarbeit zwischen Klinikern, Pathologen und Onkologen, um Behandlungsergebnisse zu verbessern. Durch die Zusammenführung aktueller molekularer Erkenntnisse und Therapieentwicklungen bietet diese Übersichtsarbeit eine wertvolle Grundlage für die personalisierte Behandlung von HCC und CCA.
Keywords
Hepatocellular Carcinoma - Cholangiocarcinoma - Molecular Targeted Therapy - Precision Medicine - Molecular DiagnosticsSchlüsselwörter
Hepatozelluläres Karzinom - Cholangiokarzinom - Präzisionsmedizin - Molekulare Diagnostik - Zielgerichtete TherapiePublication History
Received: 21 January 2025
Accepted after revision: 24 February 2025
Article published online:
31 March 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Bray F, Laversanne M, Sung H. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2024; 74: 229-263
- 2 Bitzer M, Groβ S, Albert J. et al. S3-Leitlinie Diagnostik und Therapie biliärer Karzinome – Langversion. Z Gastroenterol 2023; 61: E92-E156
- 3 Sangro B, Argemi J, Ronot M. et al. EASL Clinical Practice Guidelines on the management of hepatocellular carcinoma. J Hepatol 2025; 82: 315-374
- 4 Tacke F, Horn P, Wai-Sun Wong V. et al. EASL–EASD–EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J Hepatol 2024; 81: 492-542
- 5 Kakar S, Grenert JP, Paradis V. et al. Hepatocellular carcinoma arising in adenoma: Similar immunohistochemical and cytogenetic features in adenoma and hepatocellular carcinoma portions of the tumor. Mod Pathol 2014; 27: 1499-1509
- 6 Pascale A, Rosmorduc O, Duclos-Vallée JC. New epidemiologic trends in cholangiocarcinoma. Clin Res Hepatol Gastroenterol 2023; 47
- 7 Torbenson M, Park YN, Sakamato M. et al. Hepatocellular carcinoma. In: WHO Classification of Tumours Editorial Board, Hrsg. Digestive system tumours. Lyon (France): International Agency for Research on Cancer. 2019
- 8 Calderaro J, Ziol M, Paradis V. et al. Molecular and histological correlations in liver cancer. J Hepatol 2019; 71: 616-630
- 9 Longerich T, Stenzinger A, Schirmacher P. Molecular diagnostics of hepatobiliary and pancreatic neoplasias. Virchows Arch 2024; 484: 263-272
- 10 Giorgio A, Montesarchio L, Gatti P. et al. Contrast-Enhanced Ultrasound: a Simple and Effective Tool in Defining a Rapid Diagnostic Work-up for Small Nodules Detected in Cirrhotic Patients during Surveillance. J Gastrointestin Liver Dis 2016; 25: 205-211
- 11 Schellhaas B, Görtz RS, Pfeifer L. et al. Diagnostic accuracy of contrast-enhanced ultrasound for the differential diagnosis of hepatocellular carcinoma: ESCULAP versus CEUS-LI-RADS. Eur J Gastroenterol Hepatol 2017; 29: 1036-1044
- 12 Silva MA, Hegab B, Hyde C. et al. Needle track seeding following biopsy of liver lesions in the diagnosis of hepatocellular cancer: a systematic review and meta-analysis. Gut 2008; 57: 1592 LP-1596
- 13 Rockey DC, Caldwell SH, Goodman ZD. et al. Liver biopsy. Hepatology 2009; 49: 1017-1044
- 14 Reig M, Forner A, Rimola J. et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J Hepatol 2022; 76: 681-693
- 15 Wang Y, Deng B. Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers. Cancer Metastasis Rev 2023; 42: 629-652
- 16 Plentz RR, Caselitz M, Bleck JS. et al. Hepatocellular telomere shortening correlates with chromosomal instability and the development of human hepatoma. Hepatology 2004; 40: 80-86
- 17 Calderaro J, Couchy G, Imbeaud S. et al. Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification. J Hepatol 2017; 67: 727-738
- 18 Uenishi T, Kubo S, Yamamoto T. et al. Cytokeratin 19 expression in hepatocellular carcinoma predicts early postoperative recurrence. Cancer Sci 2003; 94: 851-857
- 19 Choi JH, Thung SN. Advances in Histological and Molecular Classification of Hepatocellular Carcinoma. Biomedicines 2023; 11
- 20 Chiang DY, Villanueva A, Hoshida Y. et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res 2008; 68: 6779-6788
- 21 Morita M, Nishida N, Aoki T. et al. Role of β-Catenin Activation in the Tumor Immune Microenvironment and Immunotherapy of Hepatocellular Carcinoma. Cancers (Basel) 2023; 15
- 22 Ding SL, Yang ZW, Wang J. et al. Integrative analysis of aberrant Wnt signaling in hepatitis B virus-related hepatocellular carcinoma. World J Gastroenterol 2015; 21: 6317
- 23 Farazi PA, Glickman J, Horner J. et al. Cooperative interactions of p53 mutation, telomere dysfunction, and chronic liver damage in hepatocellular carcinoma progression. Cancer Res 2006; 66: 4766-4773
- 24 Shen T, Li SF, Wang JL. et al. TP53 R249S mutation detected in circulating tumour DNA is associated with Prognosis of hepatocellular carcinoma patients with or without hepatectomy. Liver Int 2020; 40: 2834-2847
- 25 Dhanasekaran R, Bandoh S, Roberts LR. Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000Research 2016; 5
- 26 Tümen D, Heumann P, Gülow K. et al. Pathogenesis and Current Treatment Strategies of Hepatocellular Carcinoma. Biomedicines 2022; 10
- 27 Guichard C, Amaddeo G, Imbeaud S. et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet 2012; 44: 694-698
- 28 Hino O, Kajino K, Umeda T. et al. Understanding the hypercarcinogenic state in chronic hepatitis: a clue to the prevention of human hepatocellular carcinoma. J Gastroenterol 2002; 37: 883-887
- 29 Cortessis VK, Thomas DC, Joan Levine A. et al. Environmental epigenetics: prospects for studying epigenetic mediation of exposure–response relationships. Hum Genet 2012; 131: 1565
- 30 Wu Y, Zhang Y, Qin X. et al. PI3K/AKT/mTOR pathway-related long non-coding RNAs: roles and mechanisms in hepatocellular carcinoma. Pharmacol Res 2020; 160
- 31 Honeyman JN, Simon EP, Robine N. et al. Detection of a recurrent DNAJB1-PRKACA chimeric transcript in fibrolamellar hepatocellular carcinoma. Science 2014; 343: 1010-1014
- 32 Hirsch TZ, Negulescu A, Gupta B. et al. BAP1 mutations define a homogeneous subgroup of hepatocellular carcinoma with fibrolamellar-like features and activated PKA. J Hepatol 2020; 72: 924-936
- 33 Ren Z, Xu J, Bai Y. et al. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): a randomised, open-label, phase 2–3 study. Lancet Oncol 2021; 22: 977-990
- 34 Finn RS, Qin S, Ikeda M. et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med 2020; 382: 1894-1905
- 35 Cheng A-L, Qin S, Ikeda M. et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J Hepatol 2022; 76: 862-873
- 36 Limousin W, Laurent-Puig P, Ziol M. et al. Molecular-based targeted therapies in patients with hepatocellular carcinoma and hepato-cholangiocarcinoma refractory to atezolizumab/bevacizumab. J Hepatol 2023; 79: 1450-1458
- 37 Nagtegaal ID, Odze RD, Klimstra D. et al. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020; 76: 182-188
- 38 Fan B, Malato Y, Calvisi DF. et al. Cholangiocarcinomas can originate from hepatocytes in mice. J Clin Invest 2012; 122: 2911-2915
- 39 Kendall T, Verheij J, Gaudio E. et al. Anatomical, histomorphological and molecular classification of cholangiocarcinoma. Liver Int 2019; 39: 7-18
- 40 Nakanuma Y, Kakuda Y. Pathologic classification of cholangiocarcinoma: New concepts. Best Pract Res Clin Gastroenterol 2015; 29: 277-293
- 41 Lowery MA, Ptashkin R, Jordan E. et al. Comprehensive molecular profiling of intrahepatic and extrahepatic cholangiocarcinomas: Potential targets for intervention. Clin Cancer Res 2018; 24: 4154-4161
- 42 Chun YS, Javle M. Systemic and Adjuvant Therapies for IntrahepaticCholangiocarcinoma. Cancer Control 2017; 24
- 43 Tomczak A, Springfeld C, Dill MT. et al. Precision oncology for intrahepatic cholangiocarcinoma in clinical practice. Br J Cancer 2022; 127: 1701-1708
- 44 Silverman IM, Murugesan K, Lihou CF. et al. Comprehensive genomic profiling in FIGHT-202 reveals the landscape of actionable alterations in advanced cholangiocarcinoma. J Clin Oncol 2019; 37: 4080-4080
- 45 Vogel A, Bridgewater J, Edeline J. et al. Biliary tract cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up*. Ann Oncol 2023; 34: 127-140
- 46 Borger DR, Tanabe KK, Fan KC. et al. Frequent Mutation of Isocitrate Dehydrogenase (IDH)1 and IDH2 in Cholangiocarcinoma Identified Through Broad-Based Tumor Genotyping. Oncologist 2012; 17: 72
- 47 Kipp BR, Voss JS, Kerr SE. et al. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma. Hum Pathol 2012; 43: 1552-1558
- 48 Nakamura H, Arai Y, Totoki Y. et al. Genomic spectra of biliary tract cancer. Nat Genet 2015 479 2015; 47: 1003-1010
- 49 Israel MA, Danziger N, McGregor KA. et al. Comparative Genomic Analysis of Intrahepatic Cholangiocarcinoma: Biopsy Type, Ancestry, and Testing Patterns. Oncologist 2021; 26: 787-796
- 50 Rodrigues PM, Vogel A, Arrese M. et al. Next-Generation Biomarkers for Cholangiocarcinoma. Cancers (Basel) 2021; 13