Subscribe to RSS

DOI: 10.1055/a-2554-7254
Polyolefins in the Circular Economy: Advances and Recyclability

Abstract
Plastics are widely used across various sectors, with polyolefins such as polypropylene (PP) and polyethylene (PE) making up a significant portion of global consumption. These materials are produced through olefin polymerization using diverse technologies, and their properties are tailored to meet the needs of different industries. Despite their benefits, plastics are often criticized for their environmental impact due to improper waste management, leading to littering on land and in oceans. Therefore, an intelligent and sustainable waste management system is essential to transform plastic waste into valuable resources and prevent pollution.This review article focuses on the production of value-added products through various recycling techniques, particularly the chemical recycling of polyolefins. Current technologies lack the integration of advanced tools such as artificial intelligence (AI) and machine learning (ML), which are necessary for modernizing these processes. Implementing AI and ML into existing technologies presents a significant challenge but is crucial for advancing recycling methods. The objective of this review is to highlight current polyolefin production technologies, address environmental concerns from plastic waste, and explore recycling techniques and novel processes to ensure a circular economy framework for a sustainable plastic value chain.
Keywords
Polyolefins - Technology - Recycling - Chemical and mechanical recycling - Sustainability - CircularityPublication History
Received: 29 September 2024
Accepted after revision: 28 February 2025
Article published online:
17 April 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
Saurabh Tiwari, Vivek Tembhare, Virendrakumar Gupta. Polyolefins in the Circular Economy: Advances and Recyclability. Sustainability & Circularity NOW 2025; 02: a25547254.
DOI: 10.1055/a-2554-7254
-
References
-
1
SNS Insider Strategy and Stats.
Polyolefin Market Report Scope & Overview 2023 Online: www.snsinsider.com/reports/polyolefin-market-2704 (last accessed September 27, 2024)
- 2 Gupta VK, Sapre AV. J. Mod. Polym. Chem. Mater. 2023; 2: 5
- 3 Trivedi PM, Gupta VK. J. Polym. Res. 2021; 28: 45
- 4 Gupta VK, Thakare YN, Desai BK. Olefins to polyolefins: Science and technology trends. In Advances in Petroleum Engineering II: Petrochemical. Studium Press; USA: 2015
-
5
Gupta VK,
Bhajiwala HM,
Dhamaniya S,
Kalita A,
Joshi R.
US Patent 10344103 2019
- 6 Kumawat J, Gupta VK, Vanka K. ChemCatChem 2016; 8: 1809-1818
- 7 Kumawat J, Gupta VK, Vanka K. J. Phys. Chem. C 2017; 122: 285-296
-
8
The United Nations.
The 17 Goals of Sustainable Development – The 2030 Agenda for Sustainable Development 2024 Online: www.sdgs.un.org/goals (last accessed September 27, 2024)
-
9
Verra SP.
PWRM0002 Plastic Waste Recycling Methodology, v1.1 2022 Online: https://verra.org/methodologies/pwrm0002-plastic-waste-recycling-methodology-v1-1/ (last accessed August 12, 2024)
-
10
Statista.
Distribution of global plastic materials production (2022) by region. Online: www.statista.com/statistics/281126/global-plastics-production (last accessed September 25, 2024)
-
11
OECD Library.
Global Plastics Outlook: Policy Scenarios to 2060, OECD Publishing, Paris (June 2022). Online https://www.oecd-ilibrary.org/environment/global-plastics-outlook_aa1edf33-en (last accessed September 20, 2024
- 12 Kolluru S, Thakur A, Tamakuwala D, Vishnu VK, Ramakrishna S, Chandran S. Polym. Bull. 2024; 81: 1-42
-
13
OECD Library.
Plastic pollution is growing relentlessly as waste management and recycling fall short (February 2022). Online www.oecd.org/en/about/news/press-releases/2022/02/plastic-pollution-is-growing-relentlessly-as-waste-management-and-recycling-fall-short.html (last accessed September 15, 2024)
-
14
Chemical Industry Digest.
India emerges as leading producer of plastic waste (2024). Online www.chemindigest.com/india-emerges-as-leading-producer-of-plastic-waste-study-reveals (last accessed September 27, 2024)
- 15 Lau W, Shiran Y, Bailey R, Cook E, Stuchtey MR, Velis CA, Godfrey L, Boucher J, Murphy MB, Thompson RC, Jankowska E, Castillo AC, Pilditch TD, Dixon B, Koerselman L, Kosior E, Favoino E, Gutberlet J, Baulch S, Atreya ME, Fischer D, He KK, Petit MM, Sumaila UR, Neil E, Bernhofen MV, Lawrence K, Palardy JE. Science 2020; 369: 1455-1461
- 16 Lebreton L, Andrady A. Palgrave. Commun. 2019; 5: 1-11
- 17 Hamad K, Kaseem M, Deri F. Polym. Degrad. Stab. 2013; 98: 2801-2812
- 18 Kim R, Laurens D, Kevin VJ. Waste Manage. 2017; 69: 24-58
- 19 Goodship V. Plastic recycling. Sci. Prog. 2007; 90: 245-268
- 20 Pegoretti A. Adv. Ind. Eng. Polym. Res. 2021; 4: 105-115
- 21 Pietroluongo M, Padovano E, Frache A, Badini C. Sustainable Mater. Technol. 2020; 23: e00143
- 22 Akesson D, Kuzhanthaivelu G, Bohlen M. J. Polym. Environ. 2021; 29: 985-991
- 23 Zoe O, Shaver M. Macromol. Rapid Commun. 2021; 42: 2000415
- 24 Fadillah G, Fatimah I, Sahroni I, Musawwa MM, Mahila TM. I, Muraza O. Catalysis 2021; 11: 837
- 25 Aboul-Enein A, Awadallah A. Chem. Eng. J. 2018; 354: 802-816
- 26 Aboul-Enein A, Awadallah A. Polym. Degrad. Stab. 2019; 167: 157-169
- 27 Bajad G, Tiwari S, Vijayakumar R. Mater. Sci. Eng., B 2015; 194: 68-77
- 28 Shen Y, Gong W, Zheng B, Gao L. Appl. Catal. B 2016; 181: 769-778
- 29 Nahil M, Wu C, Williams P. Fuel Process. Technol. 2015; 130: 46-53
-
30
Wu S,
Kuo J,
Wey M.
J. Anal. Appl. Pyrolysis 2019; 10464
- 31 Aboul-Enein A, Awadallah A. Mater. Chem. Phys. 2019; 238: 121879
- 32 Wang J, Shen B, Lan M, Kang D, Wu C. Catal. Today 2019; 351: 50-57
- 33 Wu C, Nahil M, Miskolczi N, Huang J, Williams PT. Environ. Sci. Technol. 2014; 48: 819-826
- 34 Yao D, Wu C, Yang H, Zhang Y, Nahil MA, Chen Y, Williams PT. Energy Convers. Manage. 2017; 148: 692-700
- 35 Onwudili J, Muhammad C, Williams PJ. Energy Ins. 2019; 92: 1337-1347
- 36 Kassargy C, Awad S, Burnens G, Kahine K, Tazerout M. Fuel 2018; 224: 764-773
- 37 Miandad R, Barakat M, Rehan M, Aburiazaiza AS, Ismail IM. I, Nizami AS. Waste Manage. 2017; 69: 66-78
- 38 Akubo K, Nahil MA, Williams PT. J. Energy Inst. 2019; 92: 195-202
- 39 Lopez A, Marco DI, Caballero BM, Adrados A, Laresgoiti MF. Waste Manage. 2011; 31: 1852-1858
- 40 Lopez A, Marco DI, Caballero BM, Laresgoiti MF, Adrados A, Aranzabal A. Appl. Catal., B 2011; 104: 211-219
-
41
Gupta VK,
Tiwari S.
Indian Patent, 380369 2021
-
42
Gupta VK,
Tiwari S.
Indian patent application No. 202421013784 2024
- 43 Kim YM, Lee HW, Choi SJ, Jeon JK, Park SH, Jung SC, Kim SC, Park YK. Int. J. Hydrogen Energy 2017; 42: 18434-18441
- 44 Zhang B, Zhong Z, Ding K, Song Z. Fuel 2015; 139: 622-628
- 45 Chai Y, Gao N, Wang M, Wu C. Chem. Eng. J. 2020; 382: 122947
- 46 Muneer B, Zeeshan M, Qaisar S, Razzaq M, Iftikhar H. J. Cleaner Prod. 2019; 237: 117762
- 47 Lee H, Choi S, Park S, Jeon JK, Jung SC, Kim S, Park YK. Nanoscale Res. Lett. 2014; 9: 1-8
- 48 Xu D, Xiong Y, Ye J, Su Y, Dong Q, Zhang S. Chem. Eng. J. 2020; 392: 123728
- 49 Byrappa K, Yoshimura M. Handbook of Hydrothermal Technology: A Technology for Crystal Growth and Materials Processing. William Andrew: Applied Science Publishers; 2001
- 50 Georgina C, Laredoa JR, Edith MR. Cleaner Chem. Eng. 2023; 5: 100094
- 51 Moriya T, Enomoto H. Polym. Degrad. Stab. 1999; 65: 373-386
- 52 Su X, Zhao Y, Zhang R. Fuel Process. Technol. 2004; 85: 1249-1258
- 53 Chen W, Jin K, Wang N. ACS Sustainable Chem. Eng. 2019; 7: 3749-3768
- 54 Zhao P, Yuan Z, Zhang J, Song X, Wang C, Guob Q, Ragauskas AJ. Sustainable Energy Fuels 2021; 5: 575-583
- 55 Lachos PD, Lu T, Chen WT. Sustainable Green Chemistry in Polymer Research. Volume 1, Biocatalysis and Biobased Materials. American Chemical Society; Washington, DC: 2023. pp 101-116
- 56 Jin K, Vozka P, Gentilcore C, Kilaz G, Wang NL. Fuel 2021; 294: 120505
- 57 Mukundan S, Wagner JL, Annamalai PK, Ravindran DS, Krishnapillai GK, Beltramini J. Fuel Process. Technol. 2022; 238: 107523
- 58 Feuerbach S, Toor SS, Costa PA, Paradela F, Marques PA. A. S, Castello D. Energies 2024; 17: 2098
- 59 Colnik M, Kotnik P, Knez Z, Skerget M. J. Supercrit. Fluids 2020; 169: 105136
- 60 Zhang H, Su X, Sun D, Zhang R, Bi J. J. Fuel Chem. Technol. 2007; 35: 487-491
- 61 Chen W, Jin K, Wang N. ACS Sustainable Chem. Eng. 2019; 7: 3749-3758
- 62 Boel MJ, Wang H, Ahmad AL, Megido L, LaFuente JM. G, Shiju NR. React. Chem. Eng. 2024; 9: 1014-1031
- 63 Abubakar F, Alfayez I, Suleymano H, McGregor J. Catal. Today 2024; 439: 114807
-
64
Lee S,
Lee H,
Lee J,
Cho H.
Available at SSRN: https://ssrn.com/abstract=4815465 2024
- 65 Sullivan KP, Werner AZ, Ramirez KJ, Ellis LD, Bussard JR, Black BA, Brandner DG, Bratti F, Buss BL, Dong X, Haugen SJ, Ingraham MA, Konev MO, Michener WE, Miscall J, Pardo I, Woodworth SP, Guss AM, Roman-Leshkov Y, Stahl SS, Beckham GT. Science 2022; 378: 207-211
- 66 Smak TJ, de Peinder P, Van der Waal JC, Altink R, Vollmer I, Weckhuysen BM. ChemSusChem 2024; 17: 7
- 67 Sewon O, Erin E. Chem. Soc. Rev. 2024; 53: 7309
- 68 Chen S, Hu YH. ChemSusChem 2024; 17: e202301449
- 69 Zefirov VV, Elmanovich IV, Stakhanov AI, Pavlov AA, Stakhanova SV, Kharitonova EP, Gallyamov MO. Polymer 2022; 14: 744
- 70 Orozco S, Lopez G, Suarez MA, Artetxe M, Alvarez J, Bilbao J, Olazar M. ACS Sustainable Chem. Eng. 2022; 10: 15791-15801
- 71 Hayashi J, Nakahara T, Kusakabe K, Morooka S. Fuel Process. Technol. 1998; 55: 265-275
- 72 Samorì C, Cespi D, Blair P, Galletti P, Malferrari D, Passarini F, Vassura I, Tagliavini E. Green Chem. 2017; 19: 1714-1720
- 73 Cecon V, Curtzwiler G, Vorst K. Macromol. Mater. Eng. 2022; 307: 2200346
- 74 Sanchez-Rivera K, Munguía-Lopez A, Zhou P, Cecon V, Yu J, Nelson K, Miller D, Grey S, Xu Z, Bar Ziv E, Vorst K, Curtzwiler G, Van Lehn R, Zavala V, Huber G. Resour. Conserv. Recycl. 2023; 197: 107086
- 75 Samorì C, Pitacco W, Vagnoni M, Catelli E, Colloricchio T, Gualandi C, Mantovani L, Mezzi A, Sciutto G, Galletti P. Resour. Conserv. Recycl. 2022; 190: 106832 Available at SSRN https://ssrn.com/abstract=4222936
- 76 Pappa G, Boukouvalas C, Giannaris C, Ntaras N, Zografos VV, Magoulas K, Lygeros AI, Tassios DP. Resour. Conserv. Recycl. 2001; 34: 33-44
- 77 Georgiopoulou I, Pappa GD, Vouyiouka SN, Magoulas K. Resour. Conserv. Recycl. 2021; 165: 105268
- 78 Achilias D, Giannoulis A, Papageorgiou G. Polym. Bull. 2009; 63: 449-465
- 79 Walker TW, Frelka N, Shen Z, Chew AK, Banick J, Grey S, Kim MS, Dumesic JA, Van Lehn RC, Huber GW. Sci. Adv. 2020; 6: 7599
- 80 Sanchez-Rivera KL, Zhou P, Kim MS, Gonzalez Chavez LD, Grey S, Nelson K, Wang SC, Hermans I, Zavala VM, Van Lehn RC, Huber GW. ChemSusChem 2021; 14: 4317-4329
- 81 Lange J.-P. ACS Sustainable Chem. Eng. 2021; 47: 15722-15738
- 82 Bauer AS, Tacker M, Uysal-Unalan I, Cruz RM. S, Varzakas T, Krauter V. Foods 2021; 10: 2702
- 83 Roosen M, Harinck L, Ugduler S, De Somer T, Hucks AG, Bele T, Buettner A, Ragaert K, Van Geem K, Dumoulin A, De Meester S. Sci. Total Environ. 2022; 812: 152467
- 84 Anouar S, Guinot C, Ruiz J, Charton F, Dole P, Joly C, Yvan C. J. Supercrit. Fluids 2015; 98: 25-32
- 85 Brown E, MacDonald A, Allen S, Allen D. J. Hazard. Mater. Adv. 2023; 10: 100309
- 86 Nandi S, Mahish SS, Das SK, Datta M, Nath D. Polym. Plast. Technol. Mater. 2023; 62: 1663-1683
-
87
United Nations.
Economic and Social Council, ECE/CES/2023, 3
-
88
Tan Y,
Cheng Y,
Xu J,
Wang H.
J. Giant. 2024; 100307
- 89 Wang H, Tsang ES. C. Cell Rep. Phys. Sci. 2024; 5: 102075
- 90 Zou L, Xu R, Wang H, Wang Z, Sun Y, Li M. Natl. Sci. Rev. 2023; 10: nwad207
- 91 Wang NM, Strong G, DaSilva V, Gao L, Huacuja R, Konstantinov IA, Rosen MS, Nett AJ, Ewart S, Geyer R, Scott SL, Guironnet D. J. Am. Chem. Soc. 2022; 12: 18526-18531