RSS-Feed abonnieren
DOI: 10.1055/a-2555-9320
Volumetrie der Seitenventrikel bei Hunden: Untersuchung zu Intra- und Inter-Rater-Reliabilität anhand manueller Bildsegmentation
Volumetry of the lateral ventricles in dogs: Examination of intra- and inter-rater reliability based on manual image segmentation
Zusammenfassung
Ziel
Volumetrische Verfahren bieten neue Ansätze für Diagnostik, Therapie und Einschätzung der Prognose neurologischer Erkrankungen. Ziel der Studie ist die Ermittlung der Intra- und Inter-Rater-Reliabilität volumetrischer Messungen bei manueller Bildsegmentation der Seitenventrikel von Hunden unter Berücksichtigung verschiedener MRT-Sequenzen, Körpermasse und Ventrikelgrößen.
Tiere, Material und Methoden
Die MRT-Datensätze von 9 Hunden, die 3 Gewichtsklassen und 3 Gruppen hinsichtlich der subjektiv eingeschätzten Ventrikelgröße repräsentieren, wurden retrospektiv aus der Datenbank unserer Klinik ausgewählt. Für jeden Patienten lagen 2D-Sequenzen in T2-, T1- und FLAIR-Wichtung in transversaler Schnittebene vor. Die Seitenventrikel wurden von 5 Untersuchern jeweils zehnmal segmentiert und volumetrisch vermessen. Zur Evaluation einer 3D-T1-Sequenz wurden 9 weitere Patienten ausgewählt und jeweils zehnmal durch einen Untersucher (JD) vermessen. Für die statistische Analyse wurden deskriptive Kennwerte sowie der Intraklassenkorrelationskoeffizient (ICC) für Intra- und Inter-Rater-Reliabilität ermittelt.
Ergebnisse
Intra-Rater-Reliabilität: Die niedrigsten Streuungswerte wurden in der 2D-T1-Sequenz für Hunde kleinerer Körper- und Ventrikelgröße ermittelt, für größere Hunden und/oder Ventrikel ergab die 3D-T1-Wichtung geringere Streuungswerte. Nur 2/36 der ermittelten ICC zeigten eine moderate Reliabilität (einmal in 2D-T1- und einmal 3D-T1-gewichteter Sequenz). Die übrigen ICC (34/36) wiesen eine geringe Reliabilität auf. Inter-Rater-Reliabilität: Die Sequenz mit der geringsten Streuung variierte stark in Abhängigkeit vom Untersucher. Alle ermittelten ICC (27/27) zeigten eine schlechte Reliabilität unabhängig von der Sequenz, der Ventrikelgröße oder dem Körpergewicht des Hundes.
Schlussfolgerungen
Die volumetrische Vermessung der Seitenventrikel beim Hund mittels manueller Segmentation weist sowohl bei Messungen durch einen als auch durch mehrere Untersucher große Schwächen hinsichtlich der Reliabilität auf.
Klinische Relevanz
Die manuelle Segmentation ist aufgrund der schlechten Reproduzierbarkeit und des hohen Zeitaufwandes als Routinediagnostik im klinischen Alltag nicht praktikabel.
Abstract
Objective
Volumetric methods offer new approaches for the diagnosis and treatment of neurologic diseases, as well as for an improved assessment of prognosis. The aim of this study was to determine the intra- and inter-rater reliability of volumetric measurements in manual image segmentation of the lateral ventricles of dogs, taking different sequences, body mass and lateral ventricle size into account.
Animals, Materials and Methods
MRI datasets of 9 dogs, representing 3 different body mass groups and 3 different ventricular size groups, were obtained retrospectively from the image database of our clinic. For each patient, 2D sequences were available in T2, T1 and FLAIR weighting in the transverse plane. The lateral ventricles were segmented and measured volumetrically 10 times each by 5 raters. A further 9 dogs were selected for evaluation of a 3D T1 sequence. One of the raters (JD) performed segmentation and measurement 10 times. Statistical analysis included descriptive data and calculation of intraclass correlation coefficient (ICC) for intra- and inter-rater reliability.
Results
Intra-rater reliability: The smallest variation in values was measured in the T1 sequence for dogs with small body mass and small ventricular size. For larger dogs and larger lateral ventricles, the 3D T1 sequence showed less variation. Only 2/36 calculated ICCs indicated moderate reliability (1 each for T1 and 3D T1 sequences). The remaining ICC (34/36) indicated poor reliability. Inter-rater reliability: The sequence with the least variation was observer dependent. All calculated ICCs (27/27) indicated poor reliability regardless of sequence, body mass or subjective ventricular size.
Conclusions
Volumetric measurement of canine lateral ventricles by manual segmentation shows major weaknesses in terms of reliability, both for single and multiple examiner measurements.
Clinical relevance
Manual segmentation as performed in this study is not suitable for routine clinical use due to poor reliability and time-consuming application.
Publikationsverlauf
Artikel online veröffentlicht:
15. April 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 DocCheck Flexicon. Hirnvolumetrie. August 2022. Im Internet: https://flexikon.doccheck.com/de/Hirnvolumetrie; Stand: 04.05.2024
- 2 Giorgio A, De Stefano N. Clinical use of brain volumetry. J Magn Reson Imaging 2013; 37: 1-14
- 3 Bigler ED, Tate DF. Brain volume, intracranial volume, and dementia. Invest Radiol 2001; 36: 539-546
- 4 Ishii K, Soma T, Shimada K. et al. Automatic volumetry of the cerebrospinal fluid space in idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Dis Extra 2013; 3: 489-496
- 5 Bendella Z, Purrer V, Haase R. et al. Brain and ventricle volume alterations in idiopathic normal pressure hydrocephalus determined by artificial intelligence-based MRI volumetry. Diagnostics 2024; 14: 1422
- 6 Giesel FL, Hart AR, Hahn HK. et al. 3D reconstructions of the cerebral ventricles and volume quantification in children with brain malformations. Acad Radiol 2009; 16: 610-617
- 7 Bermel RA, Bakshi R. The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol 2006; 5: 158-170
- 8 Farid N, Girard HM, Kemmotsu N. et al. Temporal lobe epilepsy: quantitative MR volumetry in detection of hippocampal atrophy. Radiology 2012; 264: 542
- 9 Jardim AP, Corso JT, Garcia MTFC. et al. Hippocampal atrophy on MRI is predictive of histopathological patterns and surgical prognosis in mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsy Res 2016; 128: 169-175
- 10 Schmidt MJ, Hartmann A, Farke D. et al. Association between improvement of clinical signs and decrease of ventricular volume after ventriculoperitoneal shunting in dogs with internal hydrocephalus. J Vet Intern Med 2019; 33: 1368-1375
- 11 Schmidt MJ, Laubner S, Kolecka M. et al. Comparison of the relationship between cerebral white matter and grey matter in normal dogs and dogs with lateral ventricular enlargement. PLoS One 2015; 10: e0124174
- 12 Kuwabara T, Hasegawa D, Kobayashi M. et al. Clinical magnetic resonance volumetry of the hippocampus in 58 epileptic dogs. Vet Radiol Ultrasound 2010; 51: 485-490
- 13 Estey CM, Dewey CW, Rishniw M. et al. A subset of dogs with presumptive idiopathic epilepsy show hippocampal asymmetry: a volumetric comparison with non-epileptic dogs using MRI. Front Veterinary Sci 2017; 4: 183
- 14 Ogata N, Gillis TE, Liu X. et al. Brain structural abnormalities in Doberman pinschers with canine compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45: 1-6
- 15 Milne ME, Steward C, Firestone SM. et al. Development of representative magnetic resonance imaging–based atlases of the canine brain and evaluation of three methods for atlas-based segmentation. Am J Vet Res 2016; 77: 395-403
- 16 Yushkevich PA, Piven J, Hazlett HC. et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006; 31: 1116-1128
- 17 Luft AR, Skalej M, Welte D. et al. Reliability and exactness of MRI-based volumetry: a phantom study. J Magn Reson Imaging 1996; 6: 700-704
- 18 Tohka J. Partial volume effect modeling for segmentation and tissue classification of brain magnetic resonance images: A review. World J Radiol 2014; 6: 855
- 19 Filippi M, Horsfield MA, Rovaris M. et al. Intraobserver and interobserver variability in schemes for estimating volume of brain lesions on MR images in multiple sclerosis. Am J Neuroradiol 1998; 19: 239-244
- 20 Gunz NI, Lodzinska J, Woods G. et al. A simplified and accurate CT-volumetry method for the canine liver. Vet Radiol Ultrasound 2021; 1–7
- 21 Akudjedu TN, Nabulsi L, Makelyte M. et al. A comparative study of segmentation techniques for the quantification of brain subcortical volume. Brain Imaging Behav 2018; 12: 1678-1695
- 22 Doring TM, Kubo TT, Cruz LCH. et al. Evaluation of hippocampal volume based on MR imaging in patients with bipolar affective disorder applying manual and automatic segmentation techniques. J Magn Reson Imaging 2011; 33: 565-572
- 23 Doiche DP, Rahal SC, Silva JPD. et al. Qualitative and quantitative evaluation of the ventricular system and brain parenchyma in healthy dogs of different skull conformation on computed tomography scans. Anat Histol Embryol 2022; 51: 112-118
- 24 Kennedy KM, Erickson KI, Rodrigue KM. et al. Age-related differences in regional brain volumes: a comparison of optimized voxel-based morphometry to manual volumetry. Neurobiol Aging 2009; 30: 1657-1676
- 25 Hsu YY, Schuff N, Du AT. et al. Comparison of automated and manual MRI volumetry of hippocampus in normal aging and dementia. J Magn Reson Imaging 2002; 16: 305-310
- 26 Milne ME, Anderson GA, Chow KE. et al. Description of technique and lower reference limit for magnetic resonance imaging of hippocampal volumetry in dogs. Am J Vet Res 2013; 74: 224-231
- 27 McGraw KO, Wong SP. Forming inferences about some intraclass correlation coefficients. Psychol Methods 1996; 1: 30
- 28 Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 2016; 15: 155-163
- 29 Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull 1979; 86: 420-428
- 30 Portney LG, Watkins MP. Foundations of Clinical Research: Applications to Practice. 3rd Edition. Pearson/Prentice Hall; Upper Saddle River, NJ: 2009
- 31 Reifinger M. Volumetric examination of senile brain involution in dogs. Anat Histol Embryol 1997; 26: 141-146
- 32 Allen JS, Damasio H, Grabowski TJ. Normal neuroanatomical variation in the human brain: An MRI-volumetric study. Am J Phys Anthropol 2002; 118: 341-358