RSS-Feed abonnieren
DOI: 10.1055/a-2560-8048
N-Fluorobenzenesulfonimide-Mediated Oxidative Rearrangement of Tetrahydro-β-carbolines
This work was financially supported by the National Natural Science Foundation of China (No. 22425108, 22201165), the National Basic Research Program of China (2024YFA1509202), and the Taishan Scholar Program at Shandong Province, Shenzhen Special Funds (JCYJ20220530141205011).

Abstract
Oxidative rearrangement of tetrahydro-β-carbolines is recognized as a biosynthetic process and represents one of the most popular and efficient approaches for the synthesis of spiro[pyrrolidine-3,3]oxindoles, which belong to an important structural scaffold that widely exists in a wide spectrum of pharmaceutically active compounds and natural products. Although halogenated reagents including t-BuOCl, NBS, and NIS, have been frequently used as oxidants for this oxidative rearrangement, fluorinated reagents have not been successfully employed. Here, a universal and efficient oxidative rearrangement of tetrahydro-β-carbolines using N-fluorobenzenesulfonimide (NFSI) as the oxidant is reported, affording a variety of spiro[pyrrolidine-3,3]oxindoles in excellent yields (90–99%). Owing to the increased oxidative ability and hardness of fluorine over other halogens, this method would be instrumental to rapid access of structurally diverse spirooxindoles.
Key word
tetrahydro-β-carbolines - spirooxindoles - oxidative rearrangement - N–F reagent - synthetic methodSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2560-8048.
- Supporting Information
Publikationsverlauf
Eingereicht: 11. Februar 2025
Angenommen nach Revision: 17. März 2025
Accepted Manuscript online:
17. März 2025
Artikel online veröffentlicht:
10. April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Ye N, Chen H, Wold EA, Shi P.-Y, Zhou J. ACS Infect. Dis. 2016; 2: 382
- 1b Santos MM. M. Tetrahedron 2014; 70: 9735
- 1c Zhou L.-M, Qu R.-Y, Yang G.-F. Expert Opin. Drug Discov. 2020; 15: 603
-
2a
Marti C,
Carreira EM.
Eur. J. Org. Chem. 2003; 2209
-
2b
Trost BM,
Brennan MK.
Synthesis 2009; 3003
- 2c Dalpozzo R, Bartoli G, Bencivenni G. Chem. Soc. Rev. 2012; 41: 7247
- 2d Cheng D, Ishihara Y, Tan B, Barbas CF. ACS Catal. 2014; 4: 743
- 2e Cao Z.-Y, Zhou F, Zhou J. Acc. Chem. Res. 2018; 51: 1443
- 3a Szabó LF. Molecules 2008; 13: 1875
- 3b O’Connor SE, Maresh JJ. Nat. Prod. Rep. 2006; 23: 532
- 3c Smith JM, Moreno J, Boal BW, Garg NK. Angew. Chem. Int. Ed. 2015; 54: 400
- 4a Imaoka S, Nakashima Y, Kitajima M, Ishikawa H. Chem. Pharm. Bull. 2024; 72: 68
- 4b Zhang Y, Zhang L, Qi X. Angew. Chem. Int. Ed. 2023; 62: e202304435
- 4c Stephen MR, Rahman MT, Tiruveedhula VP. B, Fonseca GO, Deschamps JR, Cook JM. Chem. Eur. J. 2017; 23: 15805
- 4d White JD, Li Y, Ihle DC. J. Org. Chem. 2010; 75: 3569
- 4e Hu J, Niu ZX, Wang JF. Molecules 2024; 29: 1655
- 5a Zinnes H, Shavel JJr. J. Org. Chem. 1966; 31: 1765
- 5b Peterson AC, Cook JM. Tetrahedron Lett. 1994; 35: 2651
- 5c Xu J, Liang L, Zhang H, Chi YR, Tong R. Nat. Commun. 2019; 10: 4754
- 5d Wang J, Chen Y, Du W, Chen N, Fu K, He Q, Shao L. Tetrahedron 2022; 127: 133101
- 6a Finch N, Taylor WI. J. Am. Chem. Soc. 1962; 84: 3871
- 6b Hinman RL, Bauman CP. J. Org. Chem. 1964; 29: 1206
- 6c Qian C, Li P, Sun J. Angew. Chem. Int. Ed. 2020; 60: 5871
- 6d Sathish M, Sakla AP, Nachtigall FM, Santos LS, Shankaraiah N. RSC Adv. 2021; 11: 16537
- 7a Zheng Y, Cheung YT, Liang L, Qiu H, Zhang L, Tsang A, Chen Q, Ton R. Chem. Sci. 2022; 13: 10479
- 7b Sato E, Kangawa S, Mitsudo K, Suga S. Chem. Lett. 2022; 51: 1067
- 7c Liu D, Xu H. Eur. J. Org. Chem. 2023; 26: e202200987
- 8a Richter JM, Ishihara Y, Masuda T, Whitefield BW, Llamas T, Pohjakallio A, Baran PS. J. Am. Chem. Soc. 2008; 130: 17938
- 8b Baran PS, Maimone TJ, Richter JM. Nature 2007; 446: 404
- 9a Takeuchi Y, Tarui T, Shibata N. Org. Lett. 2000; 2: 639
- 9b Jiang X, Yang J, Zhang F, Yu P, Yi P, Sun Y, Wang Y. Org. Lett. 2016; 18: 3154
- 10a Lal GS, Pez GP, Syvret RG. Chem. Rev. 1996; 96: 1737
- 10b Taylor SD, Kotoris CC, Hum G. Tetrahedron 1999; 55: 12431
- 10c Kiselyov AS. Chem. Soc. Rev. 2005; 34: 1031
- 10d Baudoux J, Cahard D. Org. React. 2007; 69: 347
- 10e Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 2
- 10f Zhu W, Hu X, Wang F, Yang X, Wu X. Chin. J. Chem. 2015; 33: 220
- 10g Wang W, Chen W, Luo J, Xie P. Chin. J. Org. Chem. 2021; 41: 543
- 11a Trenner J, Depken C, Weber T, Breder A. Angew. Chem. Int. Ed. 2013; 52: 8952
- 11b Deng Z, Wei J, Liao L, Huang H, Zhao X. Org. Lett. 2015; 17: 1834
- 11c Liao L, Guo R, Zhao X. Angew. Chem. Int. Ed. 2017; 56: 3201
- 11d Mei H, Aradi K, Kiss L, Han J. Chin. Chem. Lett. 2023; 34: 108657
- 11e Sun Y.-N, Wang C.-L, Zhang N, Wang Z, Liu Z.-L, Liu J.-L. Chin. Chem. Lett. 2014; 25: 1503
- 12a Zhang X, Guo R, Zhao X. Org. Chem. Front. 2015; 2: 1334
- 12b Cresswell AJ, Eey ST.-C, Denmark SE. Nat. Chem. 2015; 7: 146
- 12c Kratzschmar F, Kaßel M, Delony D, Breder A. Chem. Eur. J. 2015; 21: 7030
- 12d Guo R, Huang J. Huang H., Zhao X. 2016; 18: 504
- 12e Kawamata Y, Hashimoto T, Maruoka K. J. Am. Chem. Soc. 2016; 138: 5206