RSS-Feed abonnieren

DOI: 10.1055/a-2742-7859
Degradation of Cyclin-Dependent Kinase: A New Weapon for Cancer Therapy
Autor*innen
Funding This study was financially supported by the Liaoning Innovative Talents in University (Grant No. LR2017043).

Abstract
Targeting cyclin-dependent kinase (CDK) families is a promising strategy for cancer therapy due to the close association between CDKs and an abnormal cell cycle or transcriptional regulation. However, after extensive clinical use, small molecule inhibitors of CDKs have also exposed issues, such as off-target effects or acquired drug resistance. Targeting protein degradation technology, which has been validated to be effective for many targets, has undergone more than 20 years of development, and some of these methods have been pushed into clinical trials. In this review, we summarized some successful reports on CDK-targeted degradation during recent years. Moreover, some challenging issues and future development trends are highlighted in the prospect section, which might provide updated insight into the development of novel CDK-targeted degraders with great potential as a new weapon for cancer therapy.
Publikationsverlauf
Eingereicht: 14. April 2025
Angenommen: 10. November 2025
Artikel online veröffentlicht:
11. Dezember 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Malumbres M. Cyclin-dependent kinases. Genome Biol 2014; 15 (06) 122
- 2 Whittaker SR, Mallinger A, Workman P, Clarke PA. Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharmacol Ther 2017; 173: 83-105
- 3 Schmitt CA, Wang B, Demaria M. Senescence and cancer - role and therapeutic opportunities. Nat Rev Clin Oncol 2022; 19 (10) 619-636
- 4 Groelly FJ, Fawkes M, Dagg RA, Blackford AN, Tarsounas M. Targeting DNA damage response pathways in cancer. Nat Rev Cancer 2023; 23 (02) 78-94
- 5 Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nat Rev Mol Cell Biol 2022; 23 (01) 74-88
- 6 Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer 2017; 17 (02) 93-115
- 7 Liu Y, Fu L, Wu J. et al. Transcriptional cyclin-dependent kinases: potential drug targets in cancer therapy. Eur J Med Chem 2022; 229: 114056
- 8 Parua PK, Fisher RP. Dissecting the Pol II transcription cycle and derailing cancer with CDK inhibitors. Nat Chem Biol 2020; 16 (07) 716-724
- 9 Simmons Kovacs LA, Orlando DA, Haase SB. Transcription networks and cyclin/CDKs: the yin and yang of cell cycle oscillators. Cell Cycle 2008; 7 (17) 2626-2629
- 10 Loyer P, Trembley JH, Katona R, Kidd VJ, Lahti JM. Role of CDK/cyclin complexes in transcription and RNA splicing. Cell Signal 2005; 17 (09) 1033-1051
- 11 Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov 2015; 14 (02) 130-146
- 12 Roskoski Jr R. Cyclin-dependent protein serine/threonine kinase inhibitors as anticancer drugs. Pharmacol Res 2019; 139: 471-488
- 13 Doonan JH, Kitsios G. Functional evolution of cyclin-dependent kinases. Mol Biotechnol 2009; 42 (01) 14-29
- 14 Xie Z, Hou S, Yang X. et al. Lessons learned from past cyclin-dependent kinase drug discovery efforts. J Med Chem 2022; 65 (09) 6356-6389
- 15 Pellarin I, Dall'Acqua A, Favero A. et al. Cyclin-dependent protein kinases and cell cycle regulation in biology and disease. Signal Transduct Target Ther 2025; 10 (01) 11
- 16 Ravishankar D, Rajora AK, Greco F, Osborn HM. Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol 2013; 45 (12) 2821-2831
- 17 Mounika P, Gurupadayya B, Kumar HY, Namitha B. An overview of CDK enzyme inhibitors in cancer therapy. Curr Cancer Drug Targets 2023; 23 (08) 603-619
- 18 Shi Z, Tian L, Qiang T. et al. From structure modification to drug launch: a systematic review of the ongoing development of cyclin-dependent kinase inhibitors for multiple cancer therapy. J Med Chem 2022; 65 (09) 6390-6418
- 19 Bhurta D, Bharate SB. Analyzing the scaffold diversity of cyclin-dependent kinase inhibitors and revisiting the clinical and preclinical pipeline. Med Res Rev 2022; 42 (02) 654-709
- 20 Jhaveri K, Burris Rd HA, Yap TA. et al. The evolution of cyclin dependent kinase inhibitors in the treatment of cancer. Expert Rev Anticancer Ther 2021; 21 (10) 1105-1124
- 21 Vidula N, Rugo HS. Cyclin-dependent kinase 4/6 inhibitors for the treatment of breast cancer: a review of preclinical and clinical data. Clin Breast Cancer 2016; 16 (01) 8-17
- 22 Hunter RJ, Park J, Asprer KJ, Doan AH. Updated review article: cyclin-dependent kinase 4/6 inhibitor impact, FDA approval, and resistance pathways. J Pharm Technol 2023; 39 (06) 298-308
- 23 Masuda N, Kosaka N, Iwata H, Toi M. Palbociclib as an early-line treatment for Japanese patients with hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer: a review of clinical trial and real-world data. Int J Clin Oncol 2021; 26 (12) 2179-2193
- 24 Tripathy D, Bardia A, Sellers WR. Ribociclib (LEE011): mechanism of action and clinical impact of this selective cyclin-dependent kinase 4/6 inhibitor in various solid tumors. Clin Cancer Res 2017; 23 (13) 3251-3262
- 25 Kotake T, Toi M. Abemaciclib for the treatment of breast cancer. Expert Opin Pharmacother 2018; 19 (05) 517-524
- 26 Wang JR, Dong XT, Ashby CR. et al. Dalpiciclib. Cyclin-dependent kinase 4/6 (CDK4/6) inhibitor, treatment of HR+/HER2-and HER2+advanced breast cancer. Drugs Future 2022; 47: 867-886
- 27 Qiu J, Sheng D, Lin F, Jiang P, Shi N. The efficacy and safety of trilaciclib in preventing chemotherapy-induced myelosuppression: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2023; 14: 1157251
- 28 Wild M, Hahn F, Brückner N. et al. Cyclin-dependent kinases (CDKs) and the human cytomegalovirus-encoded CDK ortholog pUL97 represent highly attractive targets for synergistic drug combinations. Int J Mol Sci 2022; 23 (05) 2493
- 29 Abdelmalak M, Singh R, Anwer M. et al. The renaissance of CDK inhibitors in breast cancer therapy: an update on clinical trials and therapy resistance. Cancers (Basel) 2022; 14 (21) 5388
- 30 Gomatou G, Trontzas I, Ioannou S, Drizou M, Syrigos N, Kotteas E. Mechanisms of resistance to cyclin-dependent kinase 4/6 inhibitors. Mol Biol Rep 2021; 48 (01) 915-925
- 31 Condorelli R, Spring L, O'Shaughnessy J. et al. Polyclonal RB1 mutations and acquired resistance to CDK 4/6 inhibitors in patients with metastatic breast cancer. Ann Oncol 2018; 29 (03) 640-645
- 32 Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. PROTACs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci U S A 2001; 98 (15) 8554-8559
- 33 Békés M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov 2022; 21 (03) 181-200
- 34 Li K, Crews CM. PROTACs: past, present and future. Chem Soc Rev 2022; 51 (12) 5214-5236
- 35 Cao C, He M, Wang L, He Y, Rao Y. Chemistries of bifunctional PROTAC degraders. Chem Soc Rev 2022; 51 (16) 7066-7114
- 36 Wang Y, Jiang X, Feng F, Liu W, Sun H. Degradation of proteins by PROTACs and other strategies. Acta Pharm Sin B 2020; 10 (02) 207-238
- 37 Jiang H, Xiong H, Gu SX, Wang M. E3 ligase ligand optimization of clinical PROTACs. Front Chem 2023; 11: 1098331
- 38 Qi SM, Dong J, Xu ZY, Cheng XD, Zhang WD, Qin JJ. PROTAC: an effective targeted protein degradation strategy for cancer therapy. Front Pharmacol 2021; 12: 692574
- 39 Chirnomas D, Hornberger KR, Crews CM. Protein degraders enter the clinic - a new approach to cancer therapy. Nat Rev Clin Oncol 2023; 20 (04) 265-278
- 40 Campone M, Ma CX, Laurentiis MD. et al. VERITAC-2: a global, randomized phase 3 study of ARV-471, a proteolysis targeting chimera (PROTAC) estrogen receptor (ER) degrader, vs fulvestrant in ER plus /human epidermal growth factor receptor 2 (HER2)-advanced breast cancer. J Clin Oncol 2023; 41: TPS1122
- 41 Layman RM, Jerzak KJ, Hilton JF. et al. TACTIVE-U: Phase 1b/2 umbrella study of ARV-471, a proteolysis targeting chimera (PROTAC) estrogen receptor (ER) degrader, combined with other anticancer treatments in ER plus advanced or metastatic breast cancer. J Clin Oncol 2023; 41: TPS1121
- 42 Tadesse S, Caldon EC, Tilley W, Wang S. Cyclin-dependent kinase 2 inhibitors in cancer therapy: an update. J Med Chem 2019; 62 (09) 4233-4251
- 43 Volkart PA, Bitencourt-Ferreira G, Souto AA, de Azevedo WF. Cyclin-dependent kinase 2 in cellular senescence and cancer. a structural and functional review. Curr Drug Targets 2019; 20 (07) 716-726
- 44 Chohan TA, Qian H, Pan Y, Chen JZ. Cyclin-dependent kinase-2 as a target for cancer therapy: progress in the development of CDK2 inhibitors as anti-cancer agents. Curr Med Chem 2015; 22 (02) 237-263
- 45 Woo RA, Poon RYC. Cyclin-dependent kinases and S phase control in mammalian cells. Cell Cycle 2003; 2 (04) 316-324
- 46 Wang L, Shao X, Zhong T. et al. Discovery of a first-in-class CDK2 selective degrader for AML differentiation therapy. Nat Chem Biol 2021; 17 (05) 567-575
- 47 Hati S, Zallocchi M, Hazlitt R. et al. AZD5438-PROTAC: a selective CDK2 degrader that protects against cisplatin- and noise-induced hearing loss. Eur J Med Chem 2021; 226: 113849
- 48 Collier PN, Zheng X, Ford M. et al. Discovery of selective and orally bioavailable heterobifunctional degraders of cyclin-dependent kinase 2. J Med Chem 2025; 68 (17) 18407-18422
- 49 Kwiatkowski N, Liang T, Sha Z. et al. CDK2 heterobifunctional degraders co-degrade CDK2 and cyclin E resulting in efficacy in CCNE1-amplified and overexpressed cancers. Cell Chem Biol 2025; 32 (04) 556-569.e24
- 50 Migliaccio I, Di Leo A, Malorni L. Cyclin-dependent kinase 4/6 inhibitors in breast cancer therapy. Curr Opin Oncol 2014; 26 (06) 568-575
- 51 Battisti NML, De Glas N, Sedrak MS. et al. Use of cyclin-dependent kinase 4/6 (CDK4/6) inhibitors in older patients with ER-positive HER2-negative breast cancer: Young International Society of Geriatric Oncology review paper. Ther Adv Med Oncol 2018; 10: 1758835918809610
- 52 Knudsen ES, Witkiewicz AK. The strange case of CDK4/6 inhibitors: mechanisms, resistance, and combination strategies. Trends Cancer 2017; 3 (01) 39-55
- 53 Goel S, Bergholz JS, Zhao JJ. Targeting CDK4 and CDK6 in cancer. Nat Rev Cancer 2022; 22 (06) 356-372
- 54 Zhao B, Burgess K. PROTACs suppression of CDK4/6, crucial kinases for cell cycle regulation in cancer. Chem Commun (Camb) 2019; 55 (18) 2704-2707
- 55 Rana S, Bendjennat M, Kour S. et al. Selective degradation of CDK6 by a palbociclib based PROTAC. Bioorg Med Chem Lett 2019; 29 (11) 1375-1379
- 56 Jiang B, Wang ES, Donovan KA. et al. Development of dual and selective degraders of Cyclin-dependent kinases 4 and 6. Angew Chem Int Ed Engl 2019; 58 (19) 6321-6326
- 57 Su S, Yang Z, Gao H. et al. Potent and preferential degradation of CDK6 via proteolysis targeting chimera degraders. J Med Chem 2019; 62 (16) 7575-7582
- 58 De Dominici M, Porazzi P, Xiao Y. et al. Selective inhibition of Ph-positive ALL cell growth through kinase-dependent and -independent effects by CDK6-specific PROTACs. Blood 2020; 135 (18) 1560-1573
- 59 He H, Zhang X, Wang J. et al. Development of degraders of cyclin-dependent kinases 4 and 6 based on rational drug design. J Med Chem 2024; 67 (13) 11354-11364
- 60 Anderson NA, Cryan J, Ahmed A. et al. Selective CDK6 degradation mediated by cereblon, VHL, and novel IAP-recruiting PROTACs. Bioorg Med Chem Lett 2020; 30 (09) 127106
- 61 Steinebach C, Ng YLD, Sosič I. et al. Systematic exploration of different E3 ubiquitin ligases: an approach towards potent and selective CDK6 degraders. Chem Sci (Camb) 2020; 11 (13) 3474-3486
- 62 Pu C, Liu Y, Deng R. et al. Development of PROTAC degrader probe of CDK4/6 based on DCAF16. Bioorg Chem 2023; 138: 106637
- 63 Verano AL, You I, Donovan KA. et al. Redirecting the neo-substrate specificity of cereblon-targeting PROTACs to helios. ACS Chem Biol 2022; 17 (09) 2404-2410
- 64 Xiong Y, Zhong Y, Yim H. et al. Bridged proteolysis targeting chimera (PROTAC) enables degradation of undruggable targets. J Am Chem Soc 2022; 144 (49) 22622-22632
- 65 Fisher RP. Secrets of a double agent: CDK7 in cell-cycle control and transcription. J Cell Sci 2005; 118 (Pt 22): 5171-5180
- 66 Fisher RP. Cdk7: a kinase at the core of transcription and in the crosshairs of cancer drug discovery. Transcription 2019; 10 (02) 47-56
- 67 Larochelle S, Merrick KA, Terret ME. et al. Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of Cdk2 revealed by chemical genetics in human cells. Mol Cell 2007; 25 (06) 839-850
- 68 Schachter MM, Merrick KA, Larochelle S. et al. A Cdk7-Cdk4 T-loop phosphorylation cascade promotes G1 progression. Mol Cell 2013; 50 (02) 250-260
- 69 Egly JM, Coin F. A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor. DNA Repair (Amst) 2011; 10 (07) 714-721
- 70 Menzl I, Witalisz-Siepracka A, Sexl V. CDK8-novel therapeutic opportunities. Pharmaceuticals (Basel) 2019; 12 (02) 92
- 71 Lv X, Tian Y, Li S. et al. Discovery and development of cyclin-dependent kinase 8 inhibitors. Curr Med Chem 2020; 27 (32) 5429-5443
- 72 Philip S, Kumarasiri M, Teo T, Yu M, Wang S. Cyclin-dependent kinase 8: a new hope in targeted cancer therapy? Miniperspective. J Med Chem 2018; 61 (12) 5073-5092
- 73 Fant CB, Taatjes DJ. Regulatory functions of the mediator kinases CDK8 and CDK19. Transcription 2019; 10 (02) 76-90
- 74 Xi M, Chen T, Wu C. et al. CDK8 as a therapeutic target for cancers and recent developments in discovery of CDK8 inhibitors. Eur J Med Chem 2019; 164: 77-91
- 75 Ji W, Du G, Jiang J. et al. Discovery of bivalent small molecule degraders of cyclin-dependent kinase 7 (CDK7). Eur J Med Chem 2024; 276: 116613
- 76 Hatcher JM, Wang ES, Johannessen L, Kwiatkowski N, Sim T, Gray NS. Development of highly potent and selective steroidal inhibitors and degraders of CDK8. ACS Med Chem Lett 2018; 9 (06) 540-545
- 77 Anshabo AT, Milne R, Wang S, Albrecht H. CDK9: a comprehensive review of its biology, and its role as a potential target for anti-cancer agents. Front Oncol 2021; 11: 678559
- 78 Shen YL, Wang YM, Zhang YX. et al. Targeting cyclin-dependent kinase 9 in cancer therapy. Acta Pharmacol Sin 2022; 43 (07) 1633-1645
- 79 Wu T, Qin Z, Tian Y. et al. Recent developments in the biology and medicinal chemistry of CDK9 inhibitors: an update. J Med Chem 2020; 63 (22) 13228-13257
- 80 Wu T, Wu X, Xu Y. et al. A patent review of selective CDK9 inhibitors in treating cancer. Expert Opin Ther Pat 2023; 33 (04) 309-322
- 81 Robb CM, Contreras JI, Kour S. et al. Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC). Chem Commun (Camb) 2017; 53 (54) 7577-7580
- 82 King HM, Rana S, Kubica SP. et al. Aminopyrazole based CDK9 PROTAC sensitizes pancreatic cancer cells to venetoclax. Bioorg Med Chem Lett 2021; 43: 128061
- 83 Olson CM, Jiang B, Erb MA. et al. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat Chem Biol 2018; 14 (02) 163-170
- 84 Pei J, Xiao Y, Liu X. et al. Piperlongumine conjugates induce targeted protein degradation. Cell Chem Biol 2023; 30 (02) 203-213.e17
- 85 Bian J, Ren J, Li Y. et al. Discovery of Wogonin-based PROTACs against CDK9 and capable of achieving antitumor activity. Bioorg Chem 2018; 81: 373-381
- 86 Qiu X, Li Y, Yu B. et al. Discovery of selective CDK9 degraders with enhancing antiproliferative activity through PROTAC conversion. Eur J Med Chem 2021; 211: 113091
- 87 Wei D, Wang H, Zeng Q. et al. Discovery of potent and selective CDK9 degraders for targeting transcription regulation in triple-negative breast cancer. J Med Chem 2021; 64 (19) 14822-14847
- 88 Tokarski II RJ, Sharpe CM, Huntsman AC. et al. Bifunctional degraders of cyclin dependent kinase 9 (CDK9): probing the relationship between linker length, properties, and selective protein degradation. Eur J Med Chem 2023; 254: 115342
- 89 Chilà R, Guffanti F, Damia G. Role and therapeutic potential of CDK12 in human cancers. Cancer Treat Rev 2016; 50: 83-88
- 90 Yan Z, Du Y, Zhang H. et al. Research progress of anticancer drugs targeting CDK12. RSC Med Chem 2023; 14 (09) 1629-1644
- 91 Liu H, Liu K, Dong Z. Targeting CDK12 for cancer therapy: function, mechanism, and drug discovery. Cancer Res 2021; 81 (01) 18-26
- 92 Choi SH, Kim S, Jones KA. Gene expression regulation by CDK12: a versatile kinase in cancer with functions beyond CTD phosphorylation. Exp Mol Med 2020; 52 (05) 762-771
- 93 Paculová H, Kohoutek J. The emerging roles of CDK12 in tumorigenesis. Cell Div 2017; 12: 7
- 94 Liang S, Hu L, Wu Z. et al. CDK12: a potent target and biomarker for human cancer therapy. Cells 2020; 9 (06) 1483
- 95 Tadesse S, Duckett DR, Monastyrskyi A. The promise and current status of CDK12/13 inhibition for the treatment of cancer. Future Med Chem 2021; 13 (02) 117-141
- 96 Jiang B, Gao Y, Che J. et al. Discovery and resistance mechanism of a selective CDK12 degrader. Nat Chem Biol 2021; 17 (06) 675-683
- 97 Niu T, Li K, Jiang L. et al. Noncovalent CDK12/13 dual inhibitors-based PROTACs degrade CDK12-Cyclin K complex and induce synthetic lethality with PARP inhibitor. Eur J Med Chem 2022; 228: 114012
- 98 Yang J, Chang Y, Tien JC. et al. Discovery of a highly potent and selective dual PROTAC degrader of CDK12 and CDK13. J Med Chem 2022; 65 (16) 11066-11083
- 99 Zhou L, Zhou K, Chang Y. et al. Discovery of ZLC491 as a potent, selective, and orally bioavailable CDK12/13 PROTAC degrader. J Med Chem 2024; 67 (20) 18247-18264
- 100 Chang Y, Wang X, Yang J. et al. Development of an orally bioavailable CDK12/13 degrader and induction of synthetic lethality with AKT pathway inhibition. Cell Rep Med 2024; 5 (10) 101752
- 101 Cheng W, Yang Z, Wang S. et al. Recent development of CDK inhibitors: an overview of CDK/inhibitor co-crystal structures. Eur J Med Chem 2019; 164: 615-639
- 102 Hardcastle IR, Golding BT, Griffin RJ. Designing inhibitors of cyclin-dependent kinases. Annu Rev Pharmacol Toxicol 2002; 42: 325-348
- 103 Teng M, Jiang J, He Z. et al. Development of CDK2 and CDK5 dual degrader TMX-2172. Angew Chem Int Ed Engl 2020; 59 (33) 13865-13870
- 104 Zhou F, Chen L, Cao C. et al. Development of selective mono or dual PROTAC degrader probe of CDK isoforms. Eur J Med Chem 2020; 187: 111952
- 105 Wei M, Zhao R, Cao Y. et al. First orally bioavailable prodrug of proteolysis targeting chimera (PROTAC) degrades cyclin-dependent kinases 2/4/6 in vivo . Eur J Med Chem 2021; 209: 112903
- 106 Dong G, Ding Y, He S, Sheng C. Molecular glues for targeted protein degradation: from serendipity to rational discovery. J Med Chem 2021; 64 (15) 10606-10620
- 107 Zhao L, Zhao J, Zhong K, Tong A, Jia D. Targeted protein degradation: mechanisms, strategies and application. Signal Transduct Target Ther 2022; 7 (01) 113
- 108 Wu H, Yao H, He C. et al. Molecular glues modulate protein functions by inducing protein aggregation: a promising therapeutic strategy of small molecules for disease treatment. Acta Pharm Sin B 2022; 12 (09) 3548-3566
- 109 Fang Y, He Q, Cao J. Targeted protein degradation and regulation with molecular glue: past and recent discoveries. Curr Med Chem 2022; 29 (14) 2490-2503
- 110 Domostegui A, Nieto-Barrado L, Perez-Lopez C, Mayor-Ruiz C. Chasing molecular glue degraders: screening approaches. Chem Soc Rev 2022; 51 (13) 5498-5517
- 111 Toriki ES, Papatzimas JW, Nishikawa K. et al. Rational chemical design of molecular glue degraders. ACS Cent Sci 2023; 9 (05) 915-926
- 112 Słabicki M, Kozicka Z, Petzold G. et al. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature 2020; 585 (7824) 293-297
- 113 Lv L, Chen P, Cao L. et al. Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger cyclin K degradation. eLife 2020; 9: e59994
- 114 Dieter SM, Siegl C, Codó PL. et al. Degradation of CCNK/CDK12 is a druggable vulnerability of colorectal cancer. Cell Rep 2021; 36 (03) 109394
- 115 Jorda R, Havlíček L, Peřina M. et al. 3,5,7-substituted pyrazolo[4,3-d]pyrimidine inhibitors of cyclin-dependent kinases and Cyclin K degraders. J Med Chem 2022; 65 (13) 8881-8896
- 116 Houles T, Boucher J, Lavoie G. et al. The CDK12 inhibitor SR-4835 functions as a molecular glue that promotes cyclin K degradation in melanoma. Cell Death Discov 2023; 9 (01) 459
- 117 Thomas KL, Bouguenina H, Miller DSJ. et al. Degradation by design: new Cyclin K degraders from old CDK inhibitors. ACS Chem Biol 2024; 19 (01) 173-184
- 118 Peng X, Hu Z, Zeng L. et al. Overview of epigenetic degraders based on PROTAC, molecular glue, and hydrophobic tagging technologies. Acta Pharm Sin B 2024; 14 (02) 533-578
- 119 Ha S, Luo G, Xiang H. A comprehensive overview of small-molecule androgen receptor degraders: recent progress and future perspectives. J Med Chem 2022; 65 (24) 16128-16154
- 120 Kastl JM, Davies G, Godsman E, Holdgate GA. Small-molecule degraders beyond PROTACs challenges and opportunities. SLAS Discov 2021; 26 (04) 524-533
- 121 Xie S, Zhu J, Li J. et al. Small-molecule hydrophobic tagging: a promising strategy of druglike technology for targeted protein degradation. J Med Chem 2023; 66 (16) 10917-10933
- 122 He Q, Zhao X, Wu D. et al. Hydrophobic tag-based protein degradation: development, opportunity and challenge. Eur J Med Chem 2023; 260: 115741
- 123 Qiu J, Bai X, Zhang W. et al. LPM3770277, a potent novel CDK4/6 degrader, exerts antitumor effect against triple-negative breast cancer. Front Pharmacol 2022; 13: 853993
- 124 Wang M, Lin R, Li J. et al. Discovery of LL-K8–22: a selective, durable, and small-molecule degrader of the CDK8-cyclin C complex. J Med Chem 2023; 66 (07) 4932-4951
- 125 Li J, Liu T, Song Y. et al. Discovery of small-molecule degraders of the CDK9-Cyclin T1 complex for targeting transcriptional addiction in prostate cancer. J Med Chem 2022; 65 (16) 11034-11057
- 126 Lin R, Yang J, Liu T. et al. Discovery of HyT-based degraders of CDK9-Cyclin T1 complex. Chem Biodivers 2023; 20 (08) e202300769
- 127 Zhong Y, Xu J, Cao H. et al. First ATG101-recruiting small molecule degrader for selective CDK9 degradation via autophagy-lysosome pathway. Acta Pharm Sin B 2025; 15 (05) 2612-2624
- 128 Chen C, Yang Y, Wang Z, Li H, Dong C, Zhang X. Recent advances in Pro-PROTAC development to address on-target off-tumor toxicity. J Med Chem 2023; 66 (13) 8428-8440
- 129 Kounde CS, Shchepinova MM, Saunders CN. et al. A caged E3 ligase ligand for PROTAC-mediated protein degradation with light. Chem Commun (Camb) 2020; 56 (41) 5532-5535
- 130 Cheng W, Li S, Wen X. et al. Development of hypoxia-activated PROTAC exerting a more potent effect in tumor hypoxia than in normoxia. Chem Commun (Camb) 2021; 57 (95) 12852-12855
- 131 Shi S, Du Y, Zou Y. et al. Rational design for nitroreductase (NTR)-responsive proteolysis targeting chimeras (PROTACs) selectively targeting tumor tissues. J Med Chem 2022; 65 (06) 5057-5071
- 132 Reynders M, Matsuura BS, Bérouti M. et al. PHOTACs enable optical control of protein degradation. Sci Adv 2020; 6 (08) eaay5064
- 133 Pfaff P, Samarasinghe KTG, Crews CM, Carreira EM. Reversible spatiotemporal control of induced protein degradation by bistable PhotoPROTACs. ACS Cent Sci 2019; 5 (10) 1682-1690
