Subscribe to RSS

DOI: 10.1055/a-2762-1558
Establishment of a Prediction Model to Diagnose the End-stage Knee Osteoarthritis Based on a Significant Difference in Ferroptosis-Related Genes in Chondrocytes
Etablierung eines Prädiktionsmodells zur Diagnose der terminalen Kniegelenksosteoarthritis auf der Grundlage signifikanter Unterschiede in ferroptoseassoziierten Genen in ChondrozytenAuthors
Supported by: the Special Program for Clinical Medicine of Nantong University QA2019022 and 2019LQ017
Supported by: the Youth Research Foundation of Nantong Municipal Health Commission WKZL2018009
Abstract
Background
Knee osteoarthritis (OA) is a widespread joint disease with no disease-modifying treatments. Chondrocyte damage is a key process in knee OA and ferroptosis is lipid peroxidation-induced iron-dependent cell death that exacerbates the process of knee OA and aggravates an imbalance in the synthesis as well as degradation of matrix metallopeptidase 13 (MMP13) and type II collagen. The clinical diagnosis of knee OA mainly depends on imaging. Whether ferroptosis-related genes could be used as new biomarkers for the diagnosis of OA remains to be explored.
Methods
A dataset was used to build a diagnostic model used to diagnose and differentiate patients with end-stage knee OA. Normalization and quality control of the three profiles was carried out using R 4.1.0.
Results
Analysis of a dataset (GSE114007) of differentially expressed genes (DEGs) found that the expression of 15 ferroptosis-related genes, including activating transcription factor 3 (ATF3), cyclin-dependent kinase inhibitor 1A (CDKN1A), and cytochrome b-245 beta chain (CYBB), showed significant changes in osteoarthritic chondrocytes relative to normal subjects. Based on 15 ferroptosis-related genes, we developed and compared diagnostic models using different supervised learning algorithms.
Conclusions
The diagnostic model based on the support vector machine gave a convincing diagnostic performance for both verifications (Area Under Curve [AUC] = 0.9601) and testing (AUC = 0.8725). The results collectively indicate that ferroptosis-related genes may play an indispensable role in knee OA and could be specific diagnostic biomarkers for knee OA.
Zusammenfassung
Hintergrund
Die Knieosteoarthrose (OA) ist eine weitverbreitete Gelenkerkrankung ohne krankheitsmodifizierende Therapien. Chondrozytenschädigung ist ein zentraler pathologischer Prozess bei Knie-OA. Ferroptose – eine neuartige, eisenabhängige Zelltodform, die durch Lipidperoxidation induziert wird – verschärft das Fortschreiten der Knie-OA und stört das Gleichgewicht zwischen Synthese und Abbau von Matrix-Metallopeptidase 13 (MMP13) sowie Kollagen Typ II. Die klinische Diagnose von Knie-OA hängt hauptsächlich von bildgebenden Methoden ab. Ob ferroptoseassoziierte Gene als neuartige diagnostische Biomarker für Knie-OA dienen können, bleibt noch zu untersuchen.
Methoden
Der Datensatz wurde verwendet, um ein Modell zur Diagnose und Differenzierung von Patienten mit terminaler Knie-OA zu erstellen. Die Normalisierung und Qualitätskontrolle der 3 Profile wurden mit der Software R 4.1.0 durchgeführt.
Ergebnisse
Die Analyse eines Datensatzes mit differenziell exprimierten Genen (DEGs, GSE114007) ergab, dass 15 ferroptoseassoziierte Gene – darunter Activating Transcription Factor 3 (ATF3), Cyclin Dependent Kinase Inhibitor 1A (CDKN1A) und Cytochrom B-245 Beta Chain (CYBB) – im Vergleich zu Gesunden bei osteoarthritischen Chondrozyten signifikante Expressionsveränderungen aufwiesen. Auf Basis der 15 ferroptoseassoziierten Gene wurden diagnostische Modelle mit verschiedenen überwachten Lernalgorithmen erstellt und verglichen.
Schlussfolgerungen
Das diagnostische Modell auf Basis der Support-Vektor-Maschine zeigte eine überzeugende diagnostische Leistung sowohl in der Validierung (Area Under Curve [AUC] = 0,9601) als auch im Test (AUC = 0,8725). Zusammengefasst weisen diese Ergebnisse darauf hin, dass ferroptoseassoziierte Gene eine unverzichtbare Rolle bei Knie-OA spielen könnten und als potenzielle spezifische diagnostische Biomarker für Knie-OA dienen könnten.
Keywords
ferroptosis - knee osteoarthritis - diagnostic model - random forest - supervised machine learningSchlüsselwörter
Ferroptose - Knieosteoarthrose - diagnostisches Modell - Random Forest - überwachtes maschinelles LernenPublication History
Received: 21 June 2025
Accepted after revision: 02 December 2025
Article published online:
20 January 2026
© 2026. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Yao Q, Wu X, Tao C. et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 2023; 8: 56
- 2 Jang S, Lee K, Ju JH. Recent Updates of Diagnosis, Pathophysiology, and Treatment on Osteoarthritis of the Knee. Int J Mol Sci 2021; 22: 2619
- 3 Abramoff B, Caldera FE. Osteoarthritis: Pathology, Diagnosis, and Treatment Options. Med Clin North Am 2020; 104: 293-311
- 4 Żęgota Z, Goździk J, Głogowska-Szeląg J. EFFICACY OF HERBAL AND NATURALLY-DERIVED DIETARY SUPPLEMENTS FOR THE MANAGEMENT OF KNEE OSTEOARTHRITIS: A MINI-REVIEW. Wiad Lek 2021; 74: 1975-1983
- 5 Bay-Jensen AC, Thudium CS, Gualillo O. et al. Biochemical marker discovery, testing and evaluation for facilitating OA drug discovery and development. Drug Discov Today 2018; 23: 349-358
- 6 Katz JN, Arant KR, Loeser RF. Diagnosis and Treatment of Hip and Knee Osteoarthritis: A Review. JAMA 2021; 325: 568-578
- 7 Frehner F, Benthien JP. Microfracture: State of the Art in Cartilage Surgery?. Cartilage 2018; 9: 339-345
- 8 Gill TM. Do the Tenets of Late-Life Disability Apply to Middle Age?. Ann Intern Med 2017; 167: 818-819
- 9 Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet 2019; 393: 1745-1759
- 10 Hodgkinson T, Kelly DC, Curtin CM. et al. Mechanosignalling in cartilage: an emerging target for the treatment of osteoarthritis. Nat Rev Rheumatol 2022; 18: 67-84
- 11 Tuncay Duruöz M, Öz N, Gürsoy DE. et al. Clinical aspects and outcomes in osteoarthritis. Best Pract Res Clin Rheumatol 2023; 37: 101855
- 12 Mei L, Zhang Z, Chen R. et al. Identification of candidate genes and chemicals associated with osteoarthritis by transcriptome-wide association study and chemical-gene interaction analysis. Arthritis Res Ther 2023; 25: 179
- 13 Li W, Xiao Z, Liu J. et al. Deep learning-assisted knee osteoarthritis automatic grading on plain radiographs: the value of multiview X-ray images and prior knowledge. Quant Imaging Med Surg 2023; 13: 3587-3601
- 14 Teoh YX, Othmani A, Lai KW. et al. Stratifying knee osteoarthritis features through multitask deep hybrid learning: Data from the osteoarthritis initiative. Comput Methods Programs Biomed 2023; 242: 107807
- 15 Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med 2019; 133: 144-152
- 16 Sharma L. Osteoarthritis of the Knee. N Engl J Med 2021; 384: 51-59
- 17 Zhou Y, Jia Z, Wang J. et al. Curcumin reverses erastin-induced chondrocyte ferroptosis by upregulating Nrf2. Heliyon 2023; 9: e20163
- 18 D’Amico D, Olmer M, Fouassier AM. et al. Urolithin A improves mitochondrial health, reduces cartilage degeneration, and alleviates pain in osteoarthritis. Aging Cell 2022; 21: e13662
- 19 Chen BY, Pathak JL, Lin HY. et al. Inflammation Triggers Chondrocyte Ferroptosis in TMJOA via HIF-1α/TFRC. J Dent Res 2024; 103: 712-722
- 20 Sun K, Jing X, Guo J. et al. Mitophagy in degenerative joint diseases. Autophagy 2021; 17: 2082-2092
- 21 Wei Y, Luo L, Gui T. et al. Targeting cartilage EGFR pathway for osteoarthritis treatment. Sci Transl Med 2021; 13: eabb3946
- 22 Yao X, Sun K, Yu S. et al. Chondrocyte ferroptosis contribute to the progression of osteoarthritis. J Orthop Translat 2021; 27: 33-43
- 23 Yifan C, Jianfeng S, Jun P. Development and Validation of a Random Forest Diagnostic Model of Acute Myocardial Infarction Based on Ferroptosis-Related Genes in Circulating Endothelial Cells. Front Cardiovasc Med 2021; 8: 663509
- 24 Boffa A, Merli G, Andriolo L. et al. Synovial Fluid Biomarkers in Knee Osteoarthritis: A Systematic Review and Quantitative Evaluation Using BIPEDs Criteria. Cartilage 2021; 13(1 suppl.): 82S-103S
- 25 Convill JG, Tawy GF, Freemont AJ. et al. Clinically Relevant Molecular Biomarkers for Use in Human Knee Osteoarthritis: A Systematic Review. Cartilage 2021; 13 (Suppl. 1) 1511s-1531s
- 26 Lou Y, Song F, Kang Y. et al. Periodic Mechanical Stress Inhibits the Development of Osteoarthritis via Regulating ATF3-Akt Axis. J Inflamm Res 2023; 16: 5613-5628
- 27 Sun K, Hou L, Guo Z. et al. JNK-JUN-NCOA4 axis contributes to chondrocyte ferroptosis and aggravates osteoarthritis via ferritinophagy. Free Radic Biol Med 2023; 200: 87-101
- 28 Tay ML, Bolam SM, Monk AP. et al. Better post-operative outcomes at 1-year follow-up are associated with lower levels of pre-operative synovitis and higher levels of IL-6 and VEGFA in unicompartmental knee arthroplasty patients. Knee Surg Sports Traumatol Arthrosc 2023; 31: 4109-4116
- 29 Pellicelli M, Picard C, Wang D. et al. E2F1 and TFDP1 Regulate PITX1 Expression in Normal and Osteoarthritic Articular Chondrocytes. PLoS One 2016; 11: e0165951
