Subscribe to RSS

DOI: 10.1055/a-2764-9625
Feasibility of PIK3CA Mutation Detection via Microfluidic Isolation of Disseminated Tumor Cells from Bone Marrow in Breast Cancer Patients
Durchführbarkeit der PIK3CA-Mutationstestung nach mikrofluider Isolierung von disseminierten Tumorzellen aus dem Knochenmark von BrustkrebspatientinnenAuthors
Supported by: Deutsche Krebshilfe 70114705
Supported by: Robert Bosch Stiftung
Supported by: Deutsche Forschungsgemeinschaft 40947457
Abstract
Disseminated tumor cells originating from the bone marrow serve as precursors of distant
metastasis and are associated with increased mortality in breast cancer. With the
emergence of targeted therapies for breast cancer, accurate procedures for enrichment
of disseminated tumor cells are crucial to investigate the molecular heterogeneity
between disseminated tumor cells and primary tumors. This study evaluated the feasibility
of PIK3CA mutation analysis in disseminated tumor cells enriched using a microfluidic-based
separation system.
Bone marrow and primary tumor samples from 84 breast cancer patients were collected.
Disseminated tumor cells were enriched from bone marrow aspirates using the Parsortix
system, followed by PIK3CA mutation analysis via MassARRAY PIK3CA Breast Panel and digital droplet PCR.
PIK3CA mutations were detected in 42.9% of primary tumors. PIK3CA mutations were neither detected via digital droplet PCR in disseminated tumor cells-positive
bone marrow samples, nor in disseminated tumor cells-negative samples with a high
allele frequency of PIK3CA mutations in the primary tumor.
These findings suggest that current microfluidic enrichment methods, such as Parsortix,
may be insufficient for reliable PIK3CA mutation detection in disseminated tumor cells. Additional research is required to
investigate alternative enrichment techniques for the analysis of mutations in disseminated
tumor cells.
Zusammenfassung
Aus dem Knochenmark stammende disseminierte Tumorzellen dienen als Vorläufer von Fernmetastasen
und stehen in Zusammenhang mit einer erhöhten Mortalität bei Brustkrebs. Mit dem Entstehen
gezielter Therapien für Brustkrebs sind neue Verfahren zur Anreicherung disseminierter
Tumorzellen von entscheidender Bedeutung, um die molekulare Heterogenität zwischen
disseminierten Tumorzellen und Primärtumoren zu untersuchen. In dieser Studie wurde
die Durchführbarkeit der PIK3CA-Mutationsanalyse von disseminierten Tumorzellen getestet, die zuvor mithilfe eines
mikrofluiden Systems angereichert wurden, überprüft.
Es wurden Knochenmark- und Primärtumorproben von 84 Brustkrebspatientinnen entnommen.
Die disseminierten Tumorzellen wurden aus Knochenmarkaspiraten mit dem Parsortix-System
angereichert, gefolgt von einer PIK3CA-Mutationsanalyse mittels MassARRAY PIK3CA Breast Panel und Digital Droplet-PCR.
PIK3CA-Mutationen wurden in 42,9% der Primärtumoren nachgewiesen. PIK3CA-Mutationen wurden weder mittels Digital Droplet-PCR in disseminierten tumorzellpositiven
Knochenmarkproben noch in disseminierten tumorzellnegativen Proben mit einer hohen
Allelfrequenz von PIK3CA-Mutationen im Primärtumor nachgewiesen.
Diese Ergebnisse deuten darauf hin, dass aktuelle mikrofluide Anreicherungsmethoden
wie Parsortix möglicherweise keinen zuverlässigen Nachweis von PIK3CA-Mutationen in disseminierten Tumorzellen ermöglichen. Es sind weitere Studien erforderlich,
um alternative Anreicherungsverfahren für die Mutationsanalyse in disseminierten Tumorzellen
zu erforschen.
Keywords
Parsortix - disseminated tumor cells (DTCs) - breast cancer - liquid biopsy - digital droplet PCR (ddPCR)Schlüsselwörter
Parsortix - disseminierte Tumorzellen (DTCs) - Brustkrebs - Liquid Biopsy - Digital Droplet-PCR (ddPCR)Publication History
Received: 27 August 2025
Accepted after revision: 22 November 2025
Article published online:
13 January 2026
© 2026. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Robert Koch-Institut. Krebs in Deutschland für 2019/2020. 2023
- 2 Bray F, Laversanne M, Sung H. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2024; 74: 229-263
- 3 Muscarella AM, Aguirre S, Hao X. et al. Exploiting bone niches: progression of disseminated tumor cells to metastasis. J Clin Invest 2021; 131: e143764
- 4 Riethdorf S, Wikman H, Pantel K. Review: Biological relevance of disseminated tumor cells in cancer patients. Int J Cancer 2008; 123: 1991-2006
- 5 Banys M, Hartkopf AD, Krawczyk N. et al. Dormancy in breast cancer. Breast Cancer (Dove Med Press) 2012; 4: 183-191
- 6 Braun S, Vogl FD, Naume B. et al. A Pooled Analysis of Bone Marrow Micrometastasis in Breast Cancer. N Engl J Med 2005; 353: 793-802
- 7 Hartkopf AD, Brucker SY, Taran FA. et al. Disseminated tumour cells from the bone marrow of early breast cancer patients: Results from an international pooled analysis. Eur J Cancer 2021; 154: 128-137
- 8 Ring A, Spataro M, Wicki A. et al. Clinical and Biological Aspects of Disseminated Tumor Cells and Dormancy in Breast Cancer. Front Cell Dev Biol 2022; 10: 929893
- 9 Wiedswang G, Borgen E, Kåresen R. et al. Detection of Isolated Tumor Cells in Bone Marrow Is an Independent Prognostic Factor in Breast Cancer. J Clin Oncol 2003; 21: 3469-3478
- 10 Hartkopf AD, Brucker SY, Taran FA. et al. Disseminated tumour cells from the bone marrow of early breast cancer patients: Results from an international pooled analysis. Eur J Cancer 2021; 154: 128-137
- 11 Riethdorf S, Pantel K. Disseminated Tumor Cells in Bone Marrow and Circulating Tumor Cells in Blood of Breast Cancer Patients: Current State of Detection and Characterization. Pathobiology 2008; 75: 140-148
- 12 Gruber I, Fehm T, Taran FA. et al. Disseminated tumor cells as a monitoring tool for adjuvant therapy in patients with primary breast cancer. Breast Cancer Res Treat 2014; 144: 353-360
- 13 Friberg S, Nystrom A. Cancer Metastases: Early Dissemination and Late Recurrences. Cancer Growth Metastasis 2015; 8: CGM.S31244
- 14 Fehm T, Braun S, Muller V. et al. A concept for the standardized detection of disseminated tumor cells in bone marrow from patients with primary breast cancer and its clinical implementation. Cancer 2006; 107: 885-892
- 15 Schindlbeck C, Andergassen U, Jueckstock J. et al. Disseminated and circulating tumor cells in bone marrow and blood of breast cancer patients: properties, enrichment, and potential targets. J Cancer Res Clin Oncol 2016; 142: 1883-1895
- 16 Cackowski FC, Wang Y, Decker JT. et al. Detection and isolation of disseminated tumor cells in bone marrow of patients with clinically localized prostate cancer. Prostate 2019; 79: 1715-1727
- 17 Magbanua MJM, Rugo HS, Hauranieh L. et al. Genomic and expression profiling reveal molecular heterogeneity of disseminated tumor cells in bone marrow of early breast cancer. NPJ Breast Cancer 2018; 4: 31
- 18 Volmer LL, Önder CE, Volz B. et al. Microfluidic Isolation of Disseminated Tumor Cells from the Bone Marrow of Breast Cancer Patients. Int J Mol Sci 2023; 24: 13930
- 19 Alix-Panabières C, Mader S, Pantel K. Epithelial-mesenchymal plasticity in circulating tumor cells. J Mol Med (Berl) 2017; 95: 133-142
- 20 Pillai SG, Siddappa CM, Ma C. et al. A microfluidic-based filtration system to enrich for bone marrow disseminated tumor cells from breast cancer patients. PLoS One 2021; 16: e0246139
- 21 Miller MC, Robinson PS, Wagner C. et al. The ParsortixTM™ Cell Separation System—A versatile liquid biopsy platform. Cytometry A 2018; 93: 1234-1239
- 22 Hvichia GE, Parveen Z, Wagner C. et al. A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells. Int J Cancer 2016; 138: 2894-2904
- 23 Mosele F, Stefanovska B, Lusque A. et al. Outcome and molecular landscape of patients with PIK3CA-mutated metastatic breast cancer. Ann Oncol 2020; 31: 377-386
- 24 Nunnery SE, Mayer IA. Targeting the PI3K/AKT/mTOR Pathway in Hormone-Positive Breast Cancer. Drugs 2020; 80: 1685-1697
- 25 Gonzalez-Angulo AM, Ferrer-Lozano J, Stemke-Hale K. et al. PI3K Pathway Mutations and PTEN Levels in Primary and Metastatic Breast Cancer. Mol Cancer Ther 2011; 10: 1093-1101
- 26 Martínez-Sáez O, Chic N, Pascual T. et al. Frequency and spectrum of PIK3CA somatic mutations in breast cancer. Breast Cancer Res 2020; 22: 45
- 27 Fusco N, Malapelle U, Fassan M. et al. PIK3CA Mutations as a Molecular Target for Hormone Receptor-Positive, HER2-Negative Metastatic Breast Cancer. Front Oncol 2021; 11: 644737
- 28 Turner NC, Im S-A, Saura C. et al. Inavolisib-Based Therapy in PIK3CA-Mutated Advanced Breast Cancer. N Engl J Med 2024; 391: 1584-1596
- 29 Würstlein R, Kolberg H-C, Hartkopf AD. et al. Update Breast Cancer 2024 Part 1 – Expert Opinion on Advanced Breast Cancer. Geburtshilfe Frauenheilkd 2024; 84: 529-540
- 30 Schmidt-Kittler O, Ragg T, Daskalakis A. et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci U S A 2003; 100: 7737-7742
- 31 Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 2007; 7: 834-846
- 32 Dupont Jensen J, Laenkholm A-V, Knoop A. et al. PIK3CA Mutations May Be Discordant between Primary and Corresponding Metastatic Disease in Breast Cancer. Clin Cancer Res 2011; 17: 667-677
- 33 Luthra R, Singh RR, Patel KP. , ed. Clinical Applications of PCR. 3. New York, Heidelberg: Humana Press; 2016
- 34 Postel M, Roosen A, Laurent-Puig P. et al. Droplet-based digital PCR and next generation sequencing for monitoring circulating tumor DNA: a cancer diagnostic perspective. Expert Rev Mol Diagn 2018; 18: 7-17
- 35 Hollestelle A, Elstrodt F, Nagel JHA. et al. Phosphatidylinositol-3-OH Kinase or RAS Pathway Mutations in Human Breast Cancer Cell Lines. Mol Cancer Res 2007; 5: 195-201
- 36 Hartkopf AD, Taran F-A, Wallwiener M. et al. Prognostic relevance of disseminated tumour cells from the bone marrow of early stage breast cancer patients – Results from a large single-centre analysis. Eur J Cancer 2014; 50: 2550-2559
- 37 Cohen EN, Jayachandran G, Hardy MR. et al. Antigen-agnostic microfluidics-based circulating tumor cell enrichment and downstream molecular characterization. PLoS One 2020; 15: e0241123
- 38 Weidele K, Stojanović N, Feliciello G. et al. Microfluidic enrichment, isolation and characterization of disseminated melanoma cells from lymph node samples. Int J Cancer 2019; 145: 232-241
- 39 Reinhardt K, Stückrath K, Hartung C. et al. PIK3CA-mutations in breast cancer. Breast Cancer Res Treat 2022; 196: 483-493
- 40 Turner NC, Oliveira M, Howell SJ. et al. Capivasertib in Hormone Receptor-Positive Advanced Breast Cancer. N Engl J Med 2023; 388: 2058-2070
- 41 Lambert A, Salleron J, Lion M. et al. Comparison of Three Real-Time PCR Assays for the Detection of PIK3CA Somatic Mutations in Formalin-Fixed Paraffin Embedded Tissues of Patients with Breast Carcinomas. Pathol Oncol Res 2019; 25: 1117-1123
- 42 Thulin A, Andersson C, Werner Rönnerman E. et al. Discordance of PIK3CA and TP53 mutations between breast cancer brain metastases and matched primary tumors. Sci Rep 2021; 11: 23548
- 43 Deng G, Krishnakumar S, Powell AA. et al. Single cell mutational analysis of PIK3CA in circulating tumor cells and metastases in breast cancer reveals heterogeneity, discordance, and mutation persistence in cultured disseminated tumor cells from bone marrow. BMC Cancer 2014; 14: 456
- 44 Park J, Cho SY, Chang ES. et al. Analysis of PIK3CA Mutation Concordance and Frequency in Primary and Different Distant Metastatic Sites in Breast Cancer. Cancer Res Treat 2023; 55: 145-154
- 45 Wang Y, Li X, Zhang S. et al. Analysis of PIK3CA mutations in the primary and recurrent tumors of hormone receptor positive/human epidermal growth factor receptor 2 negative breast cancer. Jpn J Clin Oncol 2024; 54: 1024-1031
- 46 Phan TG, Croucher PI. The dormant cancer cell life cycle. Nat Rev Cancer 2020; 20: 398-411
