Subscribe to RSS

DOI: 10.1055/a-2769-2826
Efficient Dibromination of Aromatics with Fe(NO3)3·9H2O/FeBr3
Authors
This work was supported by Youth Project of Yazhou Bay Innovation Institute of Hainan Tropical Ocean University (No. 2022CXYQNXM01), National Natural Science Foundation of China (22165009), the Scientific Research Foundation of the Higher Education Institutions of Hainan Province (Hnky2025ZD-16).

Abstract
A simple, efficient, and environmentally friendly methodology for the dibromination of anisoles using Fe(NO3)3·9H2O/FeBr3 at room temperature was developed. In general, anisoles bearing electron-donating or weak electron-withdrawing groups gave the dibrominated product in good to excellent yields, while anisoles bearing a strong electron-withdrawing group gave a high yield of the monobromination product. This protocol was also suitable for the bromination of 2- or 4-substituted substrates. Importantly, this protocol was also applicable for gram-scale synthesis. It is hopeful that this methodology will have great use in organic synthesis.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2769-2826.
- Supporting Information (PDF) (opens in new window)
Publication History
Received: 04 October 2025
Accepted after revision: 09 December 2025
Accepted Manuscript online:
11 December 2025
Article published online:
20 January 2026
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Beletskaya IP, Cheprakov AV. Chem. Rev. 2000; 100: 3009
- 1b Cordovilla C, Bartolomé C, Martínez-Ilarduya JM, Espinet P. ACS Catal. 2015; 5: 3040
- 2a Wallace OB, Lauwers KS, Dodge JA, May SA, Calvin JR, Hinklin R, Bryant HU, Shetler P, Adrian KM. D, Geiser AG, Sato M, Burris TP. J. Med. Chem. 2006; 49: 843
- 2b Hummel CW, Geiser AG, Bryant HU, Cohen IR, Dally RD, Fong KC, Frank SA, Hinklin R, Jones SA, Lewis G, McCann DJ, Rudmann DG, Shepherd TA, Tian H, Wallace OB, Wang M, Wang Y, Dodge JA. J. Med. Chem. 2005; 48: 6772
- 2c Fang J, Ameyaw AA, Britton JE, Katamreddy SR, Navas F, Miller AB, Williams SP, Gray DW, Orband-Miller LA, Shearin J, Heyer D. Bioorg. Med. Chem. Lett. 2008; 18: 5075
- 2d Ibrahim SR. M. G, Mohamed A. Phytochem. Rev. 2016; 15: 279
- 2e Jordan VC. J. Med. Chem. 2003; 46: 883
- 3a Borissov A, Maurya YK, Moshniaha L, Wong WS, Żyła-Karwowska M, Stępień M. Chem. Rev. 2022; 122: 565
- 3b Anthony JE. Angew. Chem. Int. Ed. 2008; 47: 452
- 3c An JM, Kim SH, Kim D. Org. Biomol. Chem. 2020; 18: 4288
- 3d Koning CB, Rousseau AL, van Otterlo WA. L. Tetrahedron 2003; 59: 7
- 4a Eissen M, Lenoir D. Chem. Eur. J. 2008; 14: 9830
- 4b Jangir N, Agarwal S, Jangid DK. ChemistrySelect 2022; 7: e202201488
- 4c Beck TM, Haller H, Streuff J, Riedel S. Synthesis 2014; 46: 740
- 4d Li HJ, Wu YC, Dai JH, Song Y, Cheng R, Qiao Y. Molecules 2014; 19: 3401
- 4e Saikia I, Borah AJ, Phukan P. Chem. Rev. 2016; 116: 6837
- 5a Van Kerrebroeck R, Horsten T, Stevens CV. Eur. J. Org. Chem. 2022; 35: e202200310
- 5b Podgoršek A, Zupan M, Iskra J. Angew. Chem. Int. Ed. 2009; 48: 8424
- 6a Das R, Kapur M. Asian J. Org. Chem. 2018; 7: 1524
- 6b Voskressensky LG, Golantsov NE, Maharramov AM. Synthesis 2016; 48: 615
- 7a Barton DH. R, Lacher B, Zard SZ. Tetrahedron 1987; 43: 4321
- 7b Kim S.-G, Kim J, Jung H. Tetrahedron Lett. 2005; 46: 2437
- 7c Schnepel C, Sewald N. Chem. Eur. J. 2017; 23: 12064
- 7d Wischang D, Brücher O, Hartung J. Coord. Chem. Rev. 2011; 255: 2204
- 8a Day DP, Alsenani NI. Asian J. Org. Chem. 2020; 9: 1162
- 8b Carreño MC, Ruano JL, Sanz G, Toledo GM. A, Urbano A. J. Org. Chem. 1995; 60: 5328
- 8c Mishra AK, Nagarajaiah H, Moorthy JN. Eur. J. Org. Chem. 2015; 12: 2733
- 9 Jiang D, Wua F, Cui H. Org. Biomol. Chem. 2023; 21: 1571
- 10a de Andrade VS. C, de Mattos MC. S. Tetrahedron Lett. 2020; 61: 152164
- 10b Maibunkaew T, Thongsornkleeb C, Tummatorn J, Bunrit A, Ruchirawata S. Synlett 2014; 25: 1769
- 10c Moriuchi T, Yamaguchi M, Kikushima K, Hirao T. Tetrahedron Lett. 2007; 48: 2667
- 10d Quibell JM, Perry G, Cannas DM, Larrosa I. Chem. Sci. 2018; 9: 3860
- 11a Jiang F, Trupp D, Algethami N, Zheng H, He W, Alqorashi A, Zhu C, Tang C, Li R, Liu J, Sadeghi H, Shi J, Davidson R, Korb M, Naher M, Sobolev AN, Sangtarash S, Low PJ, Hong W, Lambert C. Angew. Chem. Int. Ed. 2019; 58: 18987
- 11b Desaintjean A, Haupt T, Bole LJ, Judge NR, Hevia E, Knochel P. Angew. Chem. Int. Ed. 2021; 60: 1513
- 12 Gavinolla V, Thangalipalli S, Goud Bandalla S, Panduga R, Neella CK. New J. Chem. 2023; 47: 20777
- 13 Hirose Y, Yamazaki M, Nogata M, Nakamura A, Maegawa T. J. Org. Chem. 2019; 84: 7405
- 14 Shukla G, Singh M, Yadav AK, Singh MS. Chem. Eur. J. 2024; 30: e202303179
- 15 Shibata A, Kitamoto S, Fujimura K, Hirose Y, Hamamoto H, Nakamura A, Mik Y, Maegawa T. Synlett 2018; 29, 2275
- 16a Hamamoto H, Hattori S, Takemaru K, Miki Y. Synlett 2011; 1563
- 16b Hamamoto H, Umemoto H, Umemoto M, Ohta C, Doshita M, Miki Y. Synlett 2010; 2593
- 17 Li C, Cheng Y, Pang F, Yan X, Huang Z, Wang X, Wang X, Li Y, Wang J, Xu H. RSC Adv. 2025; 15: 8523
- 18a Gu L, Lu T, Zhang M, Tou L, Zhang Y. Adv. Synth. Catal. 2013; 355: 1077
- 18b Feng Y, Luo H, Zheng W, Matsunaga S, Lin L. ACS Catal. 2022; 12: 11089
- 18c Zhang T, Bilal M, Wang T, Zhang C, Liang Y. Chem. Commun. 2024; 60: 12213