Subscribe to RSS

DOI: 10.1055/a-2786-1336
Non-Transition-Metal-Mediated Electrochemical Oxidations of Alcohols to Aldehydes and Ketones
Authors
The authors are grateful to the European Innovation Council (EIC) under the Pathfinder programme (project no. 101070788, DualFlow to K.L.), UK Research and Innovation (UKRI) under the UK Government’s Horizon Europe funding guarantee (grant no. 10040978) and GlaxoSmithKline (GSK) for their support of C.M. and K.L.

Abstract
Given the central role of carbonyl compounds in chemical synthesis, considerable effort has been devoted to developing more sustainable and efficient methods for accessing aldehydes and ketones at both laboratory and industrial scales. In recent years electrochemical oxidations of alcohols have seen increased interest in academic settings as a method for removing the toxic and environmentally damaging reagents, such as transition-metal catalysts, found in classical alcohol oxidations. This graphical review aims to deliver a concise summary of the current synthetic electrochemical methods available and place them in the context of the traditional oxidations they aim to replace.
Publication History
Received: 04 November 2025
Accepted after revision: 12 January 2026
Accepted Manuscript online:
12 January 2026
Article published online:
29 January 2026
© 2026. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Anelli PL, Biffi C, Montanari F, Quici S. J. Org. Chem. 1987; 52: 2559
- 1b Hoover JM, Stahl SS. J. Am. Chem. Soc. 2011; 133: 16901
- 1c Semmelhack MF, Chou CS, Cortes DA. J. Am. Chem. Soc. 1983; 105: 4492
- 1d Rafiee M, Miles KC, Stahl SS. J. Am. Chem. Soc. 2015; 137: 14751
- 1e Tsunaga M, Iwakura C, Tamura H. Electrochim. Acta 1973; 18: 241
- 1f Bailey WF, Bobbitt JM, Wiberg KB. J. Org. Chem. 2007; 72: 4504
- 1g Bobbitt JM, Bartelson AL, Bailey WF, Hamlin TA, Kelly CB. J. Org. Chem. 2014; 79: 1055
- 1h Kishioka S, Ohsaka T, Tokuda K. Chem. Lett. 1998; 27: 343
- 2a Schroeder CM, Politano F, Ohlhorst KK, Leadbeater NE. RSC Adv. 2023; 13: 25459
- 2b Demizu Y, Shiigi H, Oda T, Matsumura Y, Onomura O. Tetrahedron Lett. 2008; 49: 48
- 2c Das A, Stahl SS. Angew. Chem. Int. Ed. 2017; 56: 8892
- 2d Li S, Wang S, Wang Y, He J, Li K, Gerken JB, Stahl SS, Zhong X, Wang J. Nat. Commun. 2025; 16: 266
- 2e Place SD, Kavanagh P. Electroanalysis 2024; 36: e202300195
- 2f Palmisano G, Ciriminna R, Pagliaro M. Adv. Synth. Catal. 2006; 348: 2033
- 2g Nutting JE, Rafiee M, Stahl SS. Chem. Rev. 2018; 118: 4834
- 2h Ciriminna R, Ghahremani M, Karimi B, Pagliaro M. ChemistryOpen 2017; 6: 5
- 3a Shono T, Matsumura Y, Hayashi J, Mizoguchi M. Tetrahedron Lett. 1979; 20: 165
- 3b Yoshikawa M, Murakami T, Yagi N, Murakami N, Yamahara J, Matsuda H, Maeda H, Ohmori H. Chem. Pharm. Bull. 1997; 45: 570
- 3c Okimoto M, Takahashi Y, Nagata Y, Sasaki G, Numata K. ChemInform 2005; 36
- 3d Okimoto M, Yoshida T, Hoshi M, Chiba T, Maeo K. Synth. Commun. 2011; 41: 3134
- 3e Moriyama K, Takemura M, Togo H. J. Org. Chem. 2014; 79: 6094
- 3f Yoshida J, Nakai R, Kawabata N. J. Org. Chem. 1980; 45: 5269
- 3g Maekawa H, Ishino Y, Nishiguchi I. Chem. Lett. 1994; 23: 1017
- 3h Raju T, Manivasagan S, Revathy B, Kulangiappar K, Muthukumaran A. Tetrahedron Lett. 2007; 48: 3681
- 4a Yamamoto K, Inoue T, Hanazawa N, Kuriyama M, Onomura O. Tetrahedron Green Chem. 2023; 1: 100010
- 4b William JM, Kuriyama M, Onomura O. Adv. Synth. Catal. 2014; 356: 934
- 4c Yamamoto K, Toguchi H, Kuriyama M, Watanabe S, Iwasaki F, Onomura O. J. Org. Chem. 2021; 86: 16177
- 4d Barysevich MV, Aniskevich YM, Hurski AL. Synlett 2021; 32: 1934
- 4e Bosco AJ, Lawrence S, Christopher C, Radhakrishnan S, Joseph Rosario AA, Raja S, Vasudevan D. J. Phys. Org. Chem. 2015; 28: 591
- 4f Medici A, Pedrini P, De Battisti A, Fantin G, Fogagnolo M, Guerrini A. Steroids 2001; 66: 63
- 4g Sommer F, Kappe CO, Cantillo D. Synlett 2022; 33: 166
- 5a Yamamoto K, Kikuchi N, Hamamizu T, Yoshimatsu H, Kuriyama M, Demizu Y, Onomura O. ChemElectroChem 2019; 6: 4169
- 5b Christopher C, Lawrence S, Anbu Kulandainathan M, Kulangiappar K, Easu Raja M, Xavier N, Raja S. Tetrahedron Lett. 2012; 53: 2802
- 5c Shono T, Matsumura Y, Mizoguchi M, Hayashi J. Tetrahedron Lett. 1979; 20: 3861
- 5d Matsumura Y, Yamada M, Kise N, Fujiwara M. Tetrahedron 1995; 51: 6411
- 5e Molloy C, Kaltenberger S, Edwards L, Wheelhouse KM. P, Lam K. Chem. Sci. 2025; 16: 20286
- 5f Yamamoto K, Kuriyama M, Onomura O. Isr. J. Chem. 2024; 64: e202300068
- 5g Lian F, Xu K, Zeng C. Chem. Rec. 2021; 21: 2290
- 5h Bégué J.-P, Bonnet-Delpon D, Crousse B. Synlett 2004; 18