Subscribe to RSS
DOI: 10.1055/s-0028-1082033
Assessment and Modification of the Tinnitus-Related Cortical Network
Publication History
Publication Date:
19 August 2008 (online)
ABSTRACT
Tinnitus refers to the perception of a sound in the absence of any physical source, and it is widely believed that this phantom sound is generated in the central nervous system. Thus the activation of neuronal cell assemblies is chronically changed in patients with an ongoing tinnitus perception. We used magnetoencephalography to investigate these changes in a resting condition. There was an increase of synchronized activity in the gamma and delta frequency range together with a decrease in the α band. Manipulation of these cortical networks by means of neurofeedback therapy resulted in a reduction of tinnitus loudness and distress. In this article we review the basic research and the clinical studies conducted in our laboratory and propose a model that explains the results and helps guide future research and therapy.
KEYWORDS
Tinnitus - magnetoencephalography - neurofeedback - resting state
REFERENCES
- 1 Heller A J. Classification and epidemiology of tinnitus. Otolaryngol Clin North Am. 2003; 36 239-248
- 2 Dobie R A. Depression and tinnitus. Otolaryngol Clin North Am. 2003; 36 383-388
- 3 Dandy W E. The surgical treatment of intracranial aneurysms of the internal carotid artery. Ann Surg. 1941; 114 336-340
- 4 Silverstein H. Transmeatal labyrinthectomy with and without cochleovestibular neurectomy. Laryngoscope. 1976; 86 1777-1791
- 5 Berliner K I, Shelton C, Hitselberger W E, Luxford W M. Acoustic tumors: effect of surgical removal on tinnitus. Am J Otol. 1992; 13 13-17
- 6 Eggermont J J, Roberts L E. The neuroscience of tinnitus. Trends Neurosci. 2004; 27 676-682
- 7 Kaltenbach J A. The dorsal cochlear nucleus as a participant in the auditory, attentional and emotional components of tinnitus. Hear Res. 2006; 216–217 224-234
- 8 Mirz F, Brahe Pedersen C, Ishizu K, Johannsen P et al.. Positron emission tomography of cortical centers of tinnitus. Hear Res. 1999; 134 133-144
- 9 Mühlau M, Rauschecker J P, Oestreicher E et al.. Structural brain changes in tinnitus. Cereb Cortex. 2006; 16 1283-1288
- 10 Lee Y J, Bae S J, Lee S H et al.. Evaluation of white matter structures in patients with tinnitus using diffusion tensor imaging. J Clin Neurosci. 2007; 14 515-519
- 11 Mühlnickel W, Elbert T, Taub E, Flor H. Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci U S A. 1998; 95 10340-10343
- 12 Noreña A J, Eggermont J J. Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear Res. 2003; 183 137-153
- 13 König O, Schaette R, Kempter R, Gross M. Course of hearing loss and occurrence of tinnitus. Hear Res. 2006; 221 59-64
- 14 Braitenberg V, Schutz A. Cortex: Statistics and Geometry of Neuronal Connectivity. 2nd ed. Berlin, Germany; Springer-Verlag 1998
- 15 Hebb D O. The Organization of Behavior. A Neuropsychological Theory. New York, NY; J. Wiley & Sons 1949
- 16 Ioannides A A. Dynamic functional connectivity. Curr Opin Neurobiol. 2007; 17 161-170
- 17 Laughlin S B, Sejnowski T J. Communication in neuronal networks. Science. 2003; 301 1870-1874
- 18 Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks. Nature. 1998; 393 440-442
- 19 Bassett D S, Meyer-Lindenberg A, Achard S, Duke T, Bullmore E. Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci U S A. 2006; 103 19518-19523
- 20 Micheloyannis S, Pachou E, Stam C J et al.. Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr Res. 2006; 87 60-66
- 21 Stam C J. Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network?. Neurosci Lett. 2004; 355 25-28
- 22 Berger H. Über das Elektrenkephalogramm des Menschen. Arch f Psychiatr. 1929; 87 527-570
- 23 Lachaux J P, Rodriguez E, Martinerie J, Varela F J. Measuring phase synchrony in brain signals. Hum Brain Mapp. 1999; 8 194-208
-
24 Elbert T.
Neuromagnetism . In: Andrä W, Nowak H Magnetism in medicine. London, United Kingdom; J. Wiley & Sons 1998: 190-262 - 25 Jerbi K, Lachaux J P, N'Diaye K et al.. Coherent neural representation of hand speed in humans revealed by MEG imaging. Proc Natl Acad Sci U S A. 2007; 104 7676-7681
- 26 Weisz N, Moratti S, Meinzer M, Dohrmann K, Elbert T. Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Med. 2005; 2 e153
- 27 Goebel G, Hiller W. Tinnitus Fragebogen (TF): Ein Instrument zur Erfassung von Belastung und Schweregrad bei Tinnitus. Göttingen, Germany; Hogrefe 1998
-
28 Hallam R.
Psychological approaches to the evaluation and management of tinnitus distress . In: Hazell J Tinnitus. London, United Kingdom; Churchill and Livingston 1986: 1-50 - 29 Müller S. Analyse des neuromagnetischen Spektrums bei Tinnitus [diploma thesis]. Konstanz, Germany; University of Konstanz 2007
- 30 Dohrmann K, Weisz N, Schlee W, Hartmann T, Elbert T. Neurofeedback for treating tinnitus. Prog Brain Res. 2007; 166 473-554
- 31 Llinás R R, Ribary U, Jeanmonod D, Kronberg E, Mitra P P. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci U S A. 1999; 96 15222-15227
- 32 Llinás R R, Steriade M. Bursting of thalamic neurons and states of vigilance. J Neurophysiol. 2006; 95 3297-3308
- 33 Jeanmonod D, Magnin M, Morel A. Low-threshold calcium spike bursts in the human thalamus. Common physiopathology for sensory, motor and limbic positive symptoms. Brain. 1996; 119 363-375
- 34 Weisz N, Müller S, Schlee W, Dohrmann K, Hartmann T, Elbert T. The neural code of auditory phantom perception. J Neurosci. 2007; 27 1479-1484
- 35 Sherman S M. Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci. 2001; 24 122-126
- 36 Weisz N, Dohrmann K, Elbert T. The relevance of spontaneous activity for the coding of the tinnitus sensation. Prog Brain Res. 2007; 166 61-70
- 37 Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev. 2007; 53 63-88
- 38 Pfurtscheller G, Klimesch W. Event-related desynchronization during motor behavior and visual information processing. Electroencephalogr Clin Neurophysiol Suppl. 1991; 42 58-65
- 39 Sauseng P, Klimesch W, Stadler W et al.. A shift of visual spatial attention is selectively associated with human EEG alpha activity. Eur J Neurosci. 2005; 22 2917-2926
- 40 Worden M S, Foxe J J, Wang N, Simpson G V. Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J Neurosci. 2000; 20 RC63
- 41 Gross J, Schnitzler A, Timmermann L, Ploner M. Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biol. 2007; 5 e133
- 42 Dehaene S, Changeux J P, Naccache L, Sackur J, Sergent C. Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn Sci. 2006; 10 204-211
- 43 Gross J, Schmitz F, Schnitzler I et al.. Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proc Natl Acad Sci USA. 2004; 101 13050-13055
- 44 Melloni L, Molina C, Pena M, Torres D, Singer W, Rodriguez E. Synchronization of neural activity across cortical areas correlates with conscious perception. J Neurosci. 2007; 27 2858-2865
- 45 De Ridder D, De Mulder G, Verstraeten E et al.. Primary and secondary auditory cortex stimulation for intractable tinnitus. ORL J Otorhinolaryngol Relat Spec. 2006; 68 48-54
- 46 Langguth B, Kleinjung T, Marienhagen J et al.. Transcranial magnetic stimulation for the treatment of tinnitus: effects on cortical excitability. BMC Neurosci. 2007; 8 45
- 47 Londero A, Langguth B, De Ridder D, Bonfils P, Lefaucheur J P. Repetitive transcranial magnetic stimulation (rTMS): a new therapeutic approach in subjective tinnitus?. Neurophysiol Clin. 2006; 36 145-155
- 48 Thut G, Nietzel A, Brandt S A, Pascual-Leone A. Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J Neurosci. 2006; 26 9494-9502
Winfried SchleeDipl.-Psych.
Department of Psychology, University of Konstanz
PO Box D25, 78458 Konstanz, Germany
Email: winfried.schlee@uni-konstanz.de