Minim Invasive Neurosurg 2008; 51(5): 285-291
DOI: 10.1055/s-0028-1082333
Original Article

© Georg Thieme Verlag KG Stuttgart · New York

Advanced Computer-aided Intraoperative Technologies for Information-guided Surgical Management of Gliomas: Tokyo Women's Medical University Experience

H. Iseki 1 , 2 , 3 , R. Nakamura 1 , 3 , Y. Muragaki 1 , 2 , T. Suzuki 1 , M. Chernov 3 , T. Hori 2 , K. Takakura 1 , 2 , 3
  • 1Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
  • 2Department of Neurosurgery, Neurological Institute, Tokyo Women’s Medical University, Tokyo, Japan
  • 3International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women’s Medical University, Tokyo, Japan
Further Information

Publication History

Publication Date:
14 October 2008 (online)

Abstract

The availability of the intraoperative MRI and real-time neuronavigation has dramatically changed the principles of surgery for gliomas. Current intraoperative computer-aided technologies permit perfect localization of the neoplasm, precise estimation of its volume, and clear definition of its interrelationships with the eloquent brain structures. This allows maximal tumor resection with minimal risk of postoperative disabilities. Under such conditions the medical treatment has become significantly dependent on the quality of the provided information and can be designated as information-guided management. Therefore, appropriate management of the wide spectrum of the intraoperative medical data and its adequate distribution between members of the surgical team for facilitation of the clinical decision-making is very important for attainment of the best possible outcome. Further progress in advanced neurovisualization, robotics, and comprehensive medical information technology has a great potential to increase the safety of the neurosurgical procedures for parenchymal brain tumors in the eloquent brain areas.

References

  • 1 Iseki H, Muragaki Y, Taira T. et al . New possibilities for stereotaxis. Information-guided stereotaxis.  Stereotact Funct Neurosurg. 2001;  76 159-167
  • 2 Hess KR. Extent of resection as a prognostic variable in the treatment of gliomas.  J Neurooncol. 1999;  42 227-231
  • 3 Proescholdt MA, Macher C, Woertgen C. et al . Level of evidence in the literature concerning brain tumor resection.  Clin Neurol Neurosurg. 2005;  107 95-98
  • 4 Lacroix M, Abi-Said D, Fourney DR. et al . A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival.  J Neurosurg. 2001;  95 190-198
  • 5 The Committee of Brain Tumor Registry of Japan . Report of brain tumor registry of Japan (1969–1996), 11th edition.  Neurol Med Chir (Tokyo). 2003;  43 ((Suppl)) 1-111
  • 6 Nimsky C, Ganslandt O, Cerny S. et al . Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging.  Neurosurgery. 2000;  47 1070-1080
  • 7 Hartkens T, Hill DL, Castellano-Smith AD. et al . Measurement and analysis of brain deformation during neurosurgery.  IEEE Trans Med Imaging. 2003;  22 82-92
  • 8 Trantakis C, Tittgemeyer M, Schneider JP. et al . Investigation of time-dependency of intracranial brain shift and its relation to the extent of tumor removal using intra-operative MRI.  Neurol Res. 2003;  25 9-12
  • 9 Novotny Jr J, Vymazal J, Novotny J. et al . Does new magnetic resonance imaging technology provide better geometrical accuracy during stereotactic imaging?.  J Neurosurg. 2005;  102 8-13
  • 10 Preul MC, Leblanc R, Caramanos Z. et al . Magnetic resonance spectroscopy guided brain tumor resection: differentiation between recurrent glioma and radiation change in two diagnostically difficult cases.  Can J Neurol Sci. 1998;  25 13-22
  • 11 Stadlbauer A, Moser E, Gruber S. et al . Integration of biochemical images of a tumor into frameless stereotaxy achieved using a magnetic resonance imaging/magnetic resonance spectroscopy hybrid data set.  J Neurosurg. 2004;  101 287-294
  • 12 Iseki H, Muragaki Y, Nakmura R. et al .Clinical application of augmented reality in neurosurgical field. In: Proceedings of the Computer Graphics International, July 9–11, 2003. Tokyo, Japan. Los Alamitos: IEEE Computer Society 2003: 44-49
  • 13 Iseki H, Muragaki Y, Nakamura R. et al . Intelligent operating theater using intraoperative open-MRI.  Magn Reson Med Sci. 2005;  4 129-136
  • 14 Taniguchi H, Muragaki Y, Iseki H. et al . New radiofrequency coil integrated with a stereotactic frame for intraoperative MRI-controlled stereotactically guided brain surgery.  Stereotact Funct Neurosurg. 2006;  84 136-141
  • 15 Ozawa N, Muragaki Y, Shirakawa H. et al .Navigation system based on intraoperative diffusion weighted imaging using open MRI. In: Lemke HU, Inamura K, Doi K, Vannier MW, Farman AG, eds. Computer assisted radiology and surgery: Proceedings of the 19th International Congress and Exhibition. Amsterdam: Elseiver 2005: 810-814
  • 16 Ozawa N, Muragaki Y, Nakamura R. et al . Intraoperative diffusion-weighted imaging for visualization of the pyramidal tracts. Part I: pre-clinical validation of the scanning protocol.  Minim Invas Neurosurg. 2008;  51 63-66
  • 17 Ozawa N, Muragaki Y, Nakamura R. et al . Intraoperative diffusion-weighted imaging for visualization of the pyramidal tracts. Part II: clinical study of usefulness and efficacy.  Minim Invas Neurosurg. 2008;  51 67-71
  • 18 Nakamura R, Suzukawa H, Muragaki Y. et al . Neuro-navigation system with colour-mapped contour generator for quantitative recognition of task progress and importance (abstract).  Int J Comput Assist Radiol Surg. 2006;  1 ((Suppl.1)) 489
  • 19 Ozawa N, Muragaki Y, Suzukawa H. et al . Pyramidal tract navigation based on intraoperative diffusion-weighted imaging; sound navigation using the fiber tract margin (abstract).  Int J Comput Assist Radiol Surg. 2006;  1 ((Suppl.1)) 488
  • 20 Muragaki Y, Iseki H, Maruyama T. et al . Usefulness of intraoperative magnetic resonance imaging for glioma surgery.  Acta Neurochir Suppl. 2006;  98 67-75
  • 21 Iseki H, Muragaki Y, Nakamura R. et al .Surgical information strategy desk. In: Proceedings of the 4th Symposium on “Intelligent Media Integration for Social Information Infrastructure”, December 7–8, 2006. Nagoya, Japan. Nagoya: IMI COE Nagoya University 2006: 181-185
  • 22 Nakamura R, Sakurai Y, Nambu K. et al . Surgical strategic desk for integration/monitoring/management of intraoperative information.  J Jpn Soc Comp Aided Surg. 2005;  7 355-356 , [in Japanese]
  • 23 Hongo K, Kobayashi S, Kakizawa Y. et al . NeuRobot: telecontrolled micromanipulator system for minimally invasive microneurosurgery – preliminary results.  Neurosurgery. 2002;  51 985-988
  • 24 Omori S, Muragaki Y, Sakuma I. et al . Robotic laser surgery with h=28 μm microlaser in neurosurgery.  J Robotics Mech. 2004;  16 122-128
  • 25 Noguchi M, Aoki E, Yoshida D. et al .A novel robotic laser ablation system for precision neurosurgery with intraoperative tumor detection by 5-ALA-induced PpIX fluorescence (abstract). In: Proceedings of the World Congress on Medical Physics and Biomedical Engineering, August 27 – September 1, 2006. Seoul, Korea (CD-ROM)
  • 26 Nakamura R, Omori S, Muragaki Y. et al .A robotic neurosurgery system with autofocusing motion control for mid-infrared laser ablation. In: Proceedings of the Workshop on Medical Robotics: System and Technology towards Open Architecture, October 5, 2006. Copenhagen, Denmark. Copenhagen: MICCAI 2006: 108-115

Correspondence

Prof. H. IsekiMD 

Faculty of Advanced Techno-Surgery

Institute of Advanced Biomedical Engineering and Science

Graduate School of Medicine

Tokyo Women’s Medical University

8-1 Kawada-cho

Shinjuku-ku

Tokyo 162-8666

Japan

Phone: +81/3/3353 81 11 ext.39989

Fax: +81/3/5361 77 96

Email: hiseki@abmes.twmu.ac.jp