Semin Speech Lang 2008; 29(3): 188-200
DOI: 10.1055/s-0028-1082883
© Thieme Medical Publishers

An Intention Manipulation to Change Lateralization of Word Production in Nonfluent Aphasia: Current Status

Bruce Crosson1
  • 1Veterans Administration Rehabilitation Research and Development Brain Rehabilitation Research Center of Excellence, Malcom Randall VA Medical Center, Gainesville, Florida, and Department of Clinical & Health Psychology, University of Florida, Gainesville, Florida
Further Information

Publication History

Publication Date:
21 August 2008 (online)

ABSTRACT

A review of recent aphasia literature indicates that both the left and right hemispheres participate, under various circumstances, in recovery of language and in treatment response. In chronic aphasias with large lesions and poor recovery of function, the right hemisphere is more likely to demonstrate prominent activity than in cases with small lesions and good recoveries. Extraneous activity during language tasks for aphasia patients may occur in both the left and right hemispheres. Right hemisphere activity during language in aphasia patients is likely to occur in structures homologous to damaged left hemisphere structures. When the left hemisphere is so damaged as to preclude a good recovery, recruitment of right-hemisphere mechanisms in the service of rehabilitation may be desirable. Hence a treatment with an intention manipulation (complex left-hand movement) was developed for nonfluent aphasia to assist in relateralization of language production. A review of existing evidence indicates that the intention manipulation adds value to naming treatments and helps shift lateralization of language production to right frontal structures. However, wholesale transfer of language function to the right hemisphere does not occur, and residual language knowledge in the left hemisphere also seems vital for relearning of word production. Further research is needed to understand fully the contribution of the intention manipulation to treatment response.

REFERENCES

  • 1 Kilgard M P, Merzenich M M. Cortical map reorganization enabled by nucleus basalis activity.  Science. 1998;  279 1714-1718
  • 2 Kilgard M P, Merzenich M M. Order-sensitive plasticity in adult primary auditory cortex.  Proc Natl Acad Sci U S A. 2002;  99 3205-3209
  • 3 Friel K M, Heddings A A, Nudo R J. Effects of postlesion experience on behavioral recovery and neurophysiologic reorganization after cortical injury in primates.  Neurorehabil Neural Repair. 2000;  14 187-198
  • 4 Nudo R J, Wise B M, SiFuentes F, Milliken G W. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct.  Science. 1996;  272 1791-1794
  • 5 Crosson B. Functional neuroimaging of impaired language: aphasia. In: Hillary FG, DeLuca J Functional Neuroimaging in Impaired Populations. New York, NY; Guilford 2007: 219-246
  • 6 Crosson B, McGregor K, Gopinath K S et al.. Functional MRI of language in aphasia: a review of the literature and the methodological challenges.  Neuropsychol Rev. 2007;  17 157-177
  • 7 Barlow T. On a case of double cerebral hemiplegia, with cerebral symmetrical lesions.  BMJ. 1877;  2 103-104
  • 8 Gowers W R. Lectures on the Diagnosis of Diseases of the Brain. London, United Kingdom; Churchill 1887
  • 9 Basso A, Gardelli M, Grassi M P, Mariotti M. The role of the right hemisphere in recovery from aphasia. Two case studies.  Cortex. 1989;  25 555-566
  • 10 Kinsbourne M. The minor cerebral hemisphere as a source of aphasic speech.  Arch Neurol. 1971;  25 302-306
  • 11 Nadeau S E, Crosson B. A guide to the functional imaging of cognitive processes.  Neuropsychiatry Neuropsychol Behav Neurol. 1995;  8 143-162
  • 12 Sokoloff L. Brain energy metabolism: cell body or synapse? Exploring brain functional anatomy with positron tomography: Ciba Foundation Symposium 163. West Sussex, United Kingdom; John Wiley 1991: 43-51
  • 13 Mitchell I J, Jackson A, Sambrook M A, Crossman A R. The role of the subthalamic nucleus in experimental chorea. Evidence from 2-deoxyglucose metabolic mapping and horseradish peroxidase tracing studies.  Brain. 1989;  112(Pt 6) 1533-1548
  • 14 Rosen H J, Petersen S E, Linenweber M R et al.. Neural correlates of recovery from aphasia after damage to left inferior frontal cortex.  Neurology. 2000;  55 1883-1894
  • 15 Naeser M A, Martin P I, Nicholas M et al.. Improved picture naming in chronic aphasia after TMS to part of right Broca's area: an open-protocol study.  Brain Lang. 2005;  93 95-105
  • 16 Parkinson R B. Object and Action Naming in Aphasic Stroke Patients: Lesion Characteristics Related to Treatment Improvement. Gainesville, FL; University of Florida 2005
  • 17 Naeser M A, Palumbo C L, Helm-Estabrooks N et al.. Severe nonfluency in aphasia. Role of the medial subcallosal fasciculus and other white matter pathways in recovery of spontaneous speech.  Brain. 1989;  112(Pt 1) 1-38
  • 18 Naeser M A, Hayward R W. Lesion localization in aphasia with cranial computed tomography and the Boston Diagnostic Aphasia Exam.  Neurology. 1978;  28 545-551
  • 19 Naeser M A, Baker E H, Palumbo C L et al.. Lesion site patterns in severe, nonverbal aphasia to predict outcome with a computer-assisted treatment program.  Arch Neurol. 1998;  55 1438-1448
  • 20 Brunner R J, Kornhuber H H, Seemuller E et al.. Basal ganglia participation in language pathology.  Brain Lang. 1982;  16 281-299
  • 21 Monti A, Cogiamanian F, Marceglia S et al.. Improved naming after transcranial direct current stimulation in aphasia.  J Neurol Neurosurg Psychiatry. 2007;  79 451-453
  • 22 Breier J I, Castillo E M, Boake C et al.. Spatiotemporal patterns of language-specific brain activity in patients with chronic aphasia after stroke using magnetoencephalography.  Neuroimage. 2004;  23 1308-1316
  • 23 Duffau H, Bauchet L, Lehericy S, Capelle L. Functional compensation of the left dominant insula for language.  Neuroreport. 2001;  12 2159-2163
  • 24 Leger A, Demonet J F, Ruff S et al.. Neural substrates of spoken language rehabilitation in an aphasic patient: an fMRI study.  Neuroimage. 2002;  17 174-183
  • 25 Miura K, Nakamura Y, Miura F et al.. Functional magnetic resonance imaging to word generation task in a patient with Broca's aphasia.  J Neurol. 1999;  246 939-942
  • 26 Seghier M, Lazeyras F, Momjian S et al.. Language representation in a patient with a dominant right hemisphere: fMRI evidence for an intrahemispheric reorganisation.  Neuroreport. 2001;  12 2785-2790
  • 27 Warburton E, Price C J, Swinburn K, Wise R J. Mechanisms of recovery from aphasia: evidence from positron emission tomography studies.  J Neurol Neurosurg Psychiatry. 1999;  66 155-161
  • 28 Abo M, Senoo A, Watanabe S et al.. Language-related brain function during word repetition in post-stroke aphasics.  Neuroreport. 2004;  15 1891-1894
  • 29 Gold B T, Kertesz A. Right hemisphere semantic processing of visual words in an aphasic patient: an fMRI study.  Brain Lang. 2000;  73 456-465
  • 30 Peck K K, Moore A B, Crosson B A et al.. Functional magnetic resonance imaging before and after aphasia therapy: shifts in hemodynamic time to peak during an overt language task.  Stroke. 2004;  35 554-559
  • 31 Weiller C, Isensee C, Rijntjes M et al.. Recovery from Wernicke's aphasia: a positron emission tomographic study.  Ann Neurol. 1995;  37 723-732
  • 32 Cao Y, Vikingstad E M, George K P et al.. Cortical language activation in stroke patients recovering from aphasia with functional MRI.  Stroke. 1999;  30 2331-2340
  • 33 Heiss W D, Karbe H, Weber-Luxenburger G et al.. Speech-induced cerebral metabolic activation reflects recovery from aphasia.  J Neurol Sci. 1997;  145 213-217
  • 34 Heiss W D, Kessler J, Thiel A et al.. Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia.  Ann Neurol. 1999;  45 430-438
  • 35 Karbe H, Thiel A, Weber-Luxenburger G et al.. Brain plasticity in poststroke aphasia: what is the contribution of the right hemisphere?.  Brain Lang. 1998;  64 215-230
  • 36 Perani D, Cappa S F, Tettamanti M et al.. A fMRI study of word retrieval in aphasia.  Brain Lang. 2003;  85 357-368
  • 37 Blank S C, Bird H, Turkheimer F, Wise R J. Speech production after stroke: the role of the right pars opercularis.  Ann Neurol. 2003;  54 310-320
  • 38 Calvert G A, Brammer M J, Morris R G et al.. Using fMRI to study recovery from acquired dysphasia.  Brain Lang. 2000;  71 391-399
  • 39 Lazar R M, Marshall R S, Pile-Spellman J et al.. Interhemispheric transfer of language in patients with left frontal cerebral arteriovenous malformation.  Neuropsychologia. 2000;  38 1325-1332
  • 40 Thulborn K R, Carpenter P A, Just M A. Plasticity of language-related brain function during recovery from stroke.  Stroke. 1999;  30 749-754
  • 41 Wierenga C E, Maher L M, Moore A B et al.. Neural substrates of syntactic mapping treatment: an fMRI study of two cases.  J Int Neuropsychol Soc. 2006;  12 132-146
  • 42 Musso M, Weiller C, Kiebel S et al.. Training-induced brain plasticity in aphasia.  Brain. 1999;  122(Pt 9) 1781-1790
  • 43 Cornelissen K, Laine M, Tarkiainen A et al.. Adult brain plasticity elicited by anomia treatment.  J Cogn Neurosci. 2003;  15 444-461
  • 44 Meinzer M, Flaisch T, Obleser J et al.. Brain regions essential for improved lexical access in an aged aphasic patient: a case report.  BMC Neurol. 2006;  6 28
  • 45 Betz W. Anatomischer Nachweis zweier Gehirncentra.  Centralblad fur die Medizinische Wissenschaft. 1874;  12 578-580 595-599
  • 46 James W. Principles of Psychology. 2 vols. New York, NY; Holt 1890
  • 47 Heilman K, Watson R, Valenstein E. Neglect and related disorders. In: Heilman K, Valenstein E Clinical Neuropsychology. New York, NY; Oxford University Press 2003: 296-346
  • 48 Fuster J. Cortex and Mind: Unifying Cognition. New York, NY; Oxford University Press 2003
  • 49 Nadeau S E, Crosson B. Subcortical aphasia.  Brain Lang. 1997;  58 355-402 discussion 418-323
  • 50 Coslett H B. Spatial influences on motor and language function.  Neuropsychologia. 1999;  37 695-706
  • 51 Crosson B, Fabrizio K S, Singletary F et al.. Treatment of naming in nonfluent aphasia through manipulation of intention and attention: a phase 1 comparison of two novel treatments.  J Int Neuropsychol Soc. 2007;  13 582-594
  • 52 Richards K, Singletary F, Rothi L J et al.. Activation of intentional mechanisms through utilization of nonsymbolic movements in aphasia rehabilitation.  J Rehabil Res Dev. 2002;  39 445-454
  • 53 Cato M A, Parkinson R B, Wierenga C E, Crosson B. Lesion Pattern Relates to Rehabilitative Treatment Success in Chronic Nonfluent Aphasia. Program No. 665. Society for Neuroscience 2004 Abstract Viewer/Itinerary Planner. Washington, DC; Society for Neuroscience 2004
  • 54 Cato M A, Parkinson R B, Wierenga C E, Crosson B. Predicting rehabilitative treatment success in chronic nonfluent aphasia: lesion and performance characteristics. International Neuropsychological Society, 32nd Annual Meeting Program & Abstracts, 92–93 2004
  • 55 Crosson B, Sadek J R, Maron L et al.. Relative shift in activity from medial to lateral frontal cortex during internally versus externally guided word generation.  J Cogn Neurosci. 2001;  13 272-283
  • 56 Gopinath K, Crosson B, McGregor K et al.. Selective detrending method for reducing task-correlated motion artifact during speech in event-related FMRI.  Hum Brain Mapp. , In press
  • 57 Gopinath K, Crosson B, Peck K et al.. Detection power adjustment method for improved comparisons between multiple-session individual-subject fMRI scans.  Proc Int Soc Magn Reson Med. 2005;  13 697
  • 58 Crosson B, Moore A B, Gopinath K et al.. Role of the right and left hemispheres in recovery of function during treatment of intention in aphasia.  J Cogn Neurosci. 2005;  17 392-406
  • 59 Crosson B, McGregor K, Benjamin M et al.. Can manipulating intention change frontal lateralization for word production during aphasia treatment?.  J Cogn Neurosci. 2007;  19(suppl) 255

Bruce CrossonPh.D. 

Department of Clinical & Health Psychology

University of Florida Health Science Center, Box 100165, Gainesville, FL 32610-0165

Email: nossorc1@phhp.ufl.edu