Semin Musculoskelet Radiol 2008; 12(3): 185-195
DOI: 10.1055/s-0028-1083103
© Thieme Medical Publishers

Technical Considerations and Potential Clinical Advantages of Musculoskeletal Imaging at 3.0 Tesla

Ripal T. Gandhi1 , 2 , Raymond Kuo1 , John V. Crues1
  • 1Radnet Management, Inc., Los Angeles, California
  • 2Department of Radiology, UCLA David Geffen School of Medicine, Los Angeles, California
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
29. Dezember 2008 (online)

ABSTRACT

High field magnetic resonance imaging at 3.0 T is rapidly gaining clinical acceptance as the preferred platform for magnetic resonance (MR) imaging. This is spurred in part because advances in the manufacture of magnet technology have brought the cost of 3.0-T magnets into the range of previous 1.5-T machines, as well as ongoing research demonstrating numerous advantages of 3.0 T over 1.5 T in neurological imaging. Many factors are responsible for improved imaging at higher field strength, including increased signal-to-noise and contrast-to-noise ratios. The impact of 3.0-T imaging of the musculoskeletal system has been less dramatic because its optimization is more complicated in the musculoskeletal system than in the brain. Many issues must be considered beyond what might be expected from simply doubling the field strength, including hardware design, protocol modifications because of changes in tissue characteristics at higher fields, artifact reduction, and safety. This article addresses many of these concerns, focusing on techniques to optimize high field MR imaging of the musculoskeletal system.

REFERENCES

  • 1 Tanenbaum L N. 3T in clinical practice.  App Radiol. 2005(January); 
  • 2 Lenkinski R E. High-field magnetic resonance imaging. In: RR Edelman, JR Hesselink, MB Zlatkin, JV Crues Clinical Magnetic Resonance Imaging. 3rd ed. Vol. 1. Philadelphia, PA; WB Saunders 2006: 493-511
  • 3 Mugler J PI. Basic principles. In: RR Edelman, JR Hesselink, MB Zlatkin, JV Crues Clinical Magnetic Resonance Imaging. 3rd ed. Vol. 1. Philadelphia, PA; WB Saunders 2006: 23-57
  • 4 Takahashi M, Uematsu H, Hatabu H. MR imaging at high magnetic fields.  Eur J Radiol. 2003;  46(1) 45-52
  • 5 Crues III J V, Zlatkin M B, Mirowitz S A. Musculoskeletal MRI techniques. In: RR Edelman, JR Hesselink, MB Zlatkin, JV Crues Clinical Magnetic Resonance Imaging. 3rd ed. Vol. 3. Philadelphia, PA; WB Saunders 2006: 3119-3145
  • 6 Roemer P B, Edelstein W A, Hayes C E, Souza S P, Meuller O M. The NMR phased array.  Magn Reson Med. 1990;  16 192-225
  • 7 Peterson D M, Duensing G R, Caserta J, Fitzsimmons J R. An MR transceive phased array design for spinal cord imaging at 3 Tesla: preliminary investigations of spinal cord imaging at 3 T.  Invest Radiol. 2003;  38(7) 428-435
  • 8 Pruessmann K P. Parallel imaging at high field strength: synergies and joint potential.  Top Magn Reson Imaging. 2004;  15(4) 237-244
  • 9 McRobbie D W. Parallel imaging unwrapped.  SMRT Educational Seminars. 2005;  8(4) 5-18
  • 10 Sodickson D K. Parallel imaging methods. In: RR Edelman, JR Hesselink, MB Zlatkin, JV Crues Clinical Magnetic Resonance Imaging. 3rd ed. Vol. 1. Philadelphia, PA; WB Saunders 2006: 231-248
  • 11 Glockner J F, Hu H H, Stanley D W, King K. Parallel MR imaging: a user's guide.  Radiographics. 2005;  25(5) 1279-1297
  • 12 Gold G E, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C. Musculoskeletal MRI at 3.0 T: relaxation times and image contrast.  AJR Am J Roentgenol. 2004;  183(2) 343-351
  • 13 Hashemi R H, Bradley III W G. Tissue contrast: some clinical applications. In: Hashemi RH, Bradley WG III MRI the Basics. Baltimore; Williams & Wilkins 1997: 58-66
  • 14 Bottomley P A, Foster T H, Argersinger R E, Pfeifer L M. A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: Dependence on tissue type, NMR frequency, temperature, species, excision, and age.  Med Phys. 1984;  11 425-448
  • 15 Gold G E, Suh B, Sawyer-Glover A, Beaulieu C. Musculoskeletal MRI at 3.0 T: initial clinical experience.  AJR Am J Roentgenol. 2004;  183(5) 1479-1486
  • 16 Eckstein F, Charles H C, Buck R J et al.. Accuracy and precision of quantitative assessment of cartilage morphology by magnetic resonance imaging at 3.0T.  Arthritis Rheum. 2005;  52(10) 3132-3136
  • 17 Norris D G. High field human imaging.  J Magn Reson Imaging. 2003;  18 519-529
  • 18 Boesch C. Magnetic resonance spectroscopy: basic principles. In: RR Edelman, JR Hesselink, MB Zlatkin, JV Crues Clinical Magnetic Resonance. 3rd ed. Vol. 1. Philadelphia, PA; WB Saunders 2006: 459-492
  • 19 Fayad L M, Bluemke D A, McCarthy E F, Weber K L, Barker P B, Jacobs M A. Musculoskeletal tumors: use of proton MR spectroscopic imaging for characterization.  J Magn Reson Imaging. 2006;  23(1) 23-28
  • 20 Storey P. Artifacts and solutions. In: RR Edelman, JR Hesselink, MB Zlatkin, JV Crues Clinical Magnetic Resonance Imaging. 3rd ed. Vol. 1. Philadelphia, PA; WB Saunders 2006: 577-629
  • 21 Bradley W G, Kortman K E, Crues J V. Central nervous system high-resolution magnetic resonance imaging: effect of increasing spatial resolution on resolving power.  Radiology. 1985;  156 93-98
  • 22 Constable R T, Gore J C. The loss of small objects in variable TE imaging: implications for FSE, RARE, and EPI.  Magn Reson Med. 1992;  28 9-24
  • 23 Kowalchuk R M, Kneeland J B, Dalinka M K, Siegelman E S, Dockery W D. MRI of the knee: value of short echo time fast spin-echo using high performance gradients versus conventional spin-echo imaging for the detection of meniscal tears.  Skeletal Radiol. 2000;  29(9) 520-524
  • 24 Rybicki F J, Chung T, Reid J, Jaramillo D, Mulkern R V, Ma J. Fast three-point Dixon MR imaging using low-resolution images for phase correction: a comparison with chemical shift selective fat suppression for pediatric musculoskeletal imaging.  AJR Am J Roentgenol. 2001;  177(5) 1019-1023
  • 25 Bydder G M, Pennock J M, Steiner R E, Khenia S, Payne J A, Young I R. The short TI inversion recovery sequence— an approach to MR imaging of the abdomen.  Magn Reson Imaging. 1985;  3(3) 251-254
  • 26 Hauger O, Dumont E, Chateil J, Moinard M, Diard F. Water excitation as an alternative to fat saturation in MR imaging: Preliminary results in musculoskeletal imaging.  Radiology. 2002;  224(3) 657-663
  • 27 Delfaut E M, Beltran J, Johnson G, Rousseau J, Marchandise X, Cotten A. Fat suppression in MR imaging: Techniques and pitfalls.  Radiographics. 1999;  19(2) 373-382
  • 28 Axel L, Kolman L, Charafeddine R, Hwang S N, Stolpen A H. Origin of a signal intensity loss artifact in fat-saturation MR imaging.  Radiology. 2000;  217(3) 911-915
  • 29 Hashemi R H, Bradley III W G. Basic principles of MRI. In: MRI the Basics. Baltimore; Williams & Wilkins 1997: 17-31
  • 30 Purcell E M. Magnetic Susceptibility. Electricity and Magnetism. New York, NY; McGraw-Hill 1965: 380-381
  • 31 Babcock E E, Brateman L, Weinreb J C, Horner S D, Nunnally R L. Edge artifacts in MR images: Chemical shift effect.  J Comput Assist Tomogr. 1985;  9 252-257
  • 32 Olsrud J, Latt J, Brockstedt S, Romner B, Bjorkman-Burtscher I M. Magnetic resonance imaging artifacts caused by aneurysm clips and shunt valves: Dependence on field strength (1.5 and 3 T) and imaging parameters.  J Magn Reson Imaging. 2005;  22(3) 433-437
  • 33 Peh W CG, Chan J HM. Artifacts in musculoskeletal magnetic resonance imaging: Identification and correction.  Skeletal Radiol. 2001;  30(4) 179-191
  • 34 Smith R C, Lange R C, McCarthy S M. Chemical shift artifact: Dependence on shape and orientation of the lipid-water interface.  Radiology. 1991;  181 225-229
  • 35 Suh J S, Jeong E K, Shin K H et al.. Minimizing artifacts caused by metallic implants at MR imaging: experimental and clinical studies.  AJR Am J Roentgenol. 1998;  171(5) 1207-1213
  • 36 Frazzini V I, Kagetsu N J, Johnson C E, Destian S. Internally stabilized spine: Optimal choice of frequency-encoding gradient direction during MR imaging minimizes susceptibility artifact from titanium vertebral body screws.  Radiology. 1997;  204(1) 268-272
  • 37 Kolind S H, MacKay A L, Munk P L, Xiang Q S. Quantitative evaluation of metal artifact reduction techniques.  J Magn Reson Imaging. 2004;  20(3) 487-495
  • 38 Tartaglino L M, Flanders A E, Vinitski S et al.. Metal artifacts on MR images of the postoperative spine: reduction with fast spin-echo techniques.  Radiology. 1994;  190 565-569
  • 39 Kruger G, Kastup A, Glover G H. Neuroimaging at 1.5T and 3.0T: Comparison of oxygenation-sensitive magnetic resonance imaging.  Magn Reson Med. 2001;  45 595-604
  • 40 Uludag K, Dubowitz D J, Buxton R B. Basic principles of functional MRI. In: RR Edelman, JR Hesselink, MB Zlatkin, JV Crues Clinical Magnetic Resonance Imaging. 3rd ed. Vol. 1. Philadelphia, PA; WB Saunders 2006: 249-287
  • 41 Noseworthy M D, Bulte D P, Alfonsi J. BOLD magnetic resonance imaging of skeletal muscle.  Semin Musculoskelet Radiol. 2003;  7 307-315
  • 42 Li D, Dhawale P, Rubin P J, Haacke E M, Gropler R J. Myocardial signal response to dipyridamole and dobutamine: Demonstration of the BOLD effect using a double-echo gradient-echo sequence.  Magn Reson Med. 1996;  36 16-20
  • 43 Niemi P, Poncelet B P, Kwong K K et al.. Myocardial intensity changes associated with flow stimulation in blood oxygenation sensitive magnetic resonance imaging.  Magn Reson Med. 1996;  36 78-82
  • 44 Fera F, Yongbi M N, van Gerlderen P, Frank J A, Mattay V S, Duyn J H. EPI-BOLD fMRI of human motor cortex at 1.5 T and 3.0 T: Sensitivity dependence on echo time and acquisition bandwidth.  J Magn Reson Imaging. 2004;  19(1) 19-26
  • 45 Gold G E, Hargreaves B A, Reeder S B et al.. Balanced SSFP imaging of the musculoskeletal system.  J Magn Reson Imaging. 2007;  25(2) 270-278
  • 46 Scheffler K, Lehnhardt S. Principles and applications of balanced SSFP techniques.  Eur Radiol. 2003;  13 2409-2418
  • 47 Vasanawala S S, Pauly J, Nishimura D. Fluctuating equilibrium MRI.  Magn Reson Med. 1999;  42 876-883
  • 48 Hargreaves B A, Vasanawala S S, Nayak K S, Hu B S, Nishimura D G. Fat-suppressed steady-state free precession imaging using phase detection.  Magn Reson Med. 2003;  50 210-213
  • 49 Vasanawala S S, Hargreaves B A, Pauly J, Nishimura D G, Beaulieu C F, Gold G E. Rapid musculoskeletal MRI with phase-sensitive steady-state free precession: comparison with routine knee MRI.  AJR Am J Roentgenol. 2005;  184 1450-1455
  • 50 Vasanawala S S, Pauly J, Nishimura D G. Linear combination steady-state free precession MRI.  Magn Reson Med. 2000;  43 82-90
  • 51 Reeder S B, Pelc N, Alley M, Gold G E. Rapid MR imaging of articular cartilage with steady-state free precession and multipoint fat-water separation.  AJR Am J Roentgenol. 2003;  180 357-362
  • 52 Reeder S B, Wen Z, Yu H et al.. Multicoil Dixon chemical species separation with an iterative least-squares estimation method.  Magn Reson Med. 2004;  51 35-45
  • 53 Scheffler K, Heid O, Hennig J. Magnetization preparation during the steady state: fat-saturated 3D TrueFISP.  Magn Reson Med. 2001;  45 1075-1080
  • 54 Reeder S B, Pineda A, Wen Z et al.. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging.  Magn Reson Med. 2005;  54 636-644
  • 55 Gold G E, Reeder S B, Yu H et al.. Articular cartilage of the knee: rapid three-dimensional MR imaging at 3.0 T with IDEAL balanced steady-state free precession–initial experience.  Radiology. 2006;  240(2) 546-551
  • 56 Reeder S B, McKenzie C, Pineda A et al.. Water-fat separation with IDEAL gradient-echo imaging.  J Magn Reson Imaging. 2007;  25(3) 644-652
  • 57 Reeder S B, Herzka D, McVeigh E. Signal-to-noise ratio behavior of steady-state free precession.  Magn Reson Med. 2004;  52 123-130
  • 58 Reeder S B, Hargreaves B A, Yu H, Brittain J. Homodyne reconstruction and IDEAL water-fat decomposition.  Magn Reson Med. 2005;  54 586-593
  • 59 Pineda A R, Reeder S B, Wen Z, Pelc N J. Cramer-Rao bounds for three-point decomposition of water and fat.  Magn Reson Med. 2005;  54(3) 625-635
  • 60 Disler D G, McCauley T R, Ratner L M, Kesack C D, Cooper J A. In-phase and out-of-phase MR imaging of bone marrow: prediction of neoplasia based on the detection of coexistent fat and water.  AJR Am J Roentgenol. 1997;  169 1439-1447
  • 61 Zajick D C, Morrison W B, Schweitzer M E, Parellada J A, Carrino J A. Benign and malignant processes: normal values and differentiation with chemical shift MR imaging in vertebral marrow.  Radiology. 2005;  237 590-596
  • 62 Siepmann D B, McGovern J, Brittain J H, Reeder S B. High-resolution 3D cartilage imaging with IDEAL-SPGR at 3 T.  AJR Am J Roentgenol. 2007;  189 1510-1515
  • 63 Gerdes C M, Kijowski R, Reeder S B. IDEAL imaging of the musculoskeletal system: robust water-fat separation for uniform fat suppression, marrow evaluation, and cartilage imaging.  AJR Am J Roentgenol. 2007;  189 W284-W291
  • 64 Benjamin M, Bydder G. Magnetic resonance imaging of entheses using ultrashort TE (UTE) pulse sequences.  J Magn Reson Imaging. 2007;  25(2) 381-389
  • 65 Robson M D, Gatehouse P D, Bydder M, Bydder G M. Magnetic resonance: An introduction to ultrashort TE (UTE) imaging.  J Comput Assist Tomogr. 2003;  27 825-846
  • 66 Tyler D J, Robson M D, Henkelman R, Young I, Bydder G. Magnetic resonance imaging with ultrashort TE (UTE) PULSE sequences: technical considerations.  J Magn Reson Imaging. 2007;  25(2) 279-289
  • 67 Du J, Bydder M, Bydder G, Chung C. Ultrashort TE imaging of periosteum on a clinical 3T magnetic resonance system. Presented at the Radiological Society of North America annual meeting 2007
  • 68 Pruessmann K P, Weiger M, Scheidegger M B, Boesiger P. SENSE: sensitivity encoding for fast MRI.  Magn Reson Med. 1999;  42 952-962
  • 69 Blaimer M, Breuer F, Mueller M, Heidemann R, Griswold M, Jakob P. SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method.  Top Magn Reson Imaging. 2004;  15(4) 223-236
  • 70 Sodickson D K, Manning W J. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays.  Magn Reson Med. 1997;  38 591-603
  • 71 Griswold M A, Jakob P M, Heidemann R M et al.. Generalized autocalibrating partially parallel acquisitions (GRAPPA).  Magn Reson Med. 2002;  47 1202-1210
  • 72 Bauer J S, Banerjee S, Henning T D, Krug R, Majumdar S, Link T M. Fast high-spatial-resolution MRI of the ankle with parallel imaging using GRAPPA at 3 T.  AJR Am J Roentgenol. 2007;  189 240-245
  • 73 Zou K H, Greve D N, Wang M et al.. Reproducibility of functional MR imaging: preliminary results of prospective multi-institutional study performed by biomedical informatics research network.  Radiology. 2005;  237(3) 781-789
  • 74 Burstein D, Bashir A, Gray M. MRI techniques in early stages of cartilage disease.  Invest Radiol. 2000;  35 622-638
  • 75 Bashir A, Gray M, Burstein D. Gd-DTPA2 as a measure of cartilage degradation.  Magn Reson Med. 1996;  36 665-673
  • 76 Allen R G, Burstein D, Gray M L. Monitoring glycosaminoglycan replenishment in cartilage explants with gadolinium-enhanced magnetic resonance imaging.  J Orthop Res. 1999;  17 430-436
  • 77 Bashir A, Gray M, Hartke J, Burstein D. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI.  Magn Reson Med. 1999;  41 857-865
  • 78 Trattnig S, Mlynarik V, Breitenseher M et al.. MRI visualization of proteoglycan depletion in articular cartilage via intravenous administration of Gd-DTPA.  Magn Reson Imaging. 1999;  17 577-583
  • 79 Eckstein F, Buck R, Wyman B. al. e. Quantitative imaging of cartilage morphology at 3.0 Tesla in the presence of gadopentetate dimeglumine (Gd-DTPA).  Magn Reson Med. 2007;  58 402-406
  • 80 McKenzie C A, Williams A, Prasad P V, Burstein D. Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at 1.5T and 3.0T.  J Magn Reson Imaging. 2006;  24 928-933
  • 81 Shapiro E M, Borthakur A, Dandora R, Kriss A, Leigh J S, Reddy R. Sodium visibility and quantitation in intact bovine articular cartilage using high field (23)Na MRI and MRS.  J Magn Reson. 2000;  142 24-31
  • 82 Reddy R, Insko E, Noyszewski E, Dandora R, Kneeland J, Leigh J. Sodium MRI of human articular cartilage in vivo.  Magn Reson Med. 1998;  39 697-701
  • 83 Akella S V, Regatte R R, Gougoutas A J et al.. Proteoglycan-induced changes in T1ρ-relaxation of articular cartilage at 4T.  Magn Reson Med. 2001;  46 419-423
  • 84 Regatte R R, Akella S, Wheaton A et al.. 3D-T1ρ-relaxation mapping of articular cartilage: in vivo assessment of early degenerative changes in symptomatic osteoarthritic subjects.  Acad Radiol. 2004;  11 741-749
  • 85 Pakin S K, Schweitzer M, Regatte R. 3D-T1ρ quantitation of patellar cartilage at 3.0T.  J Magn Reson Imaging. 2006;  24 1357-1363
  • 86 Pakin S K, Xu J, Schweitzer M, Regatte R. Rapid 3D-T1ρ mapping of the knee joint at 3.0T with parallel imaging.  Magn Reson Med. 2006;  56 563-571
  • 87 Saupe N, Prussmann K P, Luechinger R, Bosiger P, Marincek B, Weishaupt D. MR imaging of the wrist: comparison between 1.5- and 3-T MR imaging—preliminary experience.  Radiology. 2005;  234 256-264
  • 88 Masi J N, Sell C A, Phan C et al.. Cartilage MR imaging at 3.0 versus that at 1.5 T: preliminary results in a porcine model.  Radiology. 2005;  236 140-150
  • 89 Craig J G, Go L, Blechinger J et al.. Three-tesla imaging of the knee: initial experience.  Skeletal Radiol. 2005;  34 453-461
  • 90 Link T M, Sell C A, Masi J N et al.. 3.0 vs 1.5 T MRI in detection of focal cartilage pathology—ROC analysis in an experimental model.  Osteoarthritis Cartilage. 2006;  14 63-70
  • 91 Kuo R, Panchal M, Tanenbaum L, Crues J. 3.0 Tesla imaging of the musculoskeletal system.  J Magn Reson Imaging. 2007;  25(2) 245-261
  • 92 Suan J C, Chhem R K, Gati J S, Norley C J, Holdsworth D W. 4 T MRI of chondrocalcinosis in combination with three-dimensional CT, radiography, and arthroscopy: a report of three cases.  Skeletal Radiol. 2005;  34 714-721

John V CruesM.D. 

Radnet Management, Inc.

1516 Cotner Ave., Los Angeles, CA 90025

eMail: crues@radnetonline.com