Semin Musculoskelet Radiol 2008; 12(3): 253-265
DOI: 10.1055/s-0028-1083108
© Thieme Medical Publishers

Novel Contrast Mechanisms at High Field 1

Peter Börnert1 , Oliver Bieri2 , Klaus Scheffler2
  • 1Philips Research Laboratories, Hamburg, Germany
  • 2Division of Radiological Physics, Institute of Radiology, University Hospital, University of Basel, Basel, Switzerland
Further Information

Publication History

Publication Date:
10 October 2008 (online)

ABSTRACT

This article reviews the technical principles of novel contrast mechanisms for musculoskeletal imaging. Ultrashort echo-time imaging allows the visualization of fast T2 relaxing tissue components that are not directly detectable by standard magnetic resonance imaging. This offers several new applications, especially in musculoskeletal imaging, to visualize these tissue components directly. Magnetization transfer techniques, which have been successfully applied to assess demyelinization processes in white brain matter, for example, can be used to detect the integrity of the collagen network of cartilage, and they may help for the detection of early cartilage degradations. Finally, diffusion-weighted imaging represents a further technique to detect bone marrow pathologies or indicate collagen degradation and water content in cartilage. The technical details and implementation techniques of these dedicated imaging modalities are demonstrated and reviewed in this article, and some clinical examples are presented.

REFERENCES

  • 1 Gatehouse P D, Bydder G M. Magnetic resonance imaging of short T2 components in tissue.  Clin Radiol. 2003;  58 1-19
  • 2 Tyler D J, Robson M D, Henkelman R M, Young I R, Bydder G M. Magnetic resonance imaging with ultrashort TE (UTE) pulse sequences: technical considerations.  J Magn Reson Imaging. 2007;  25 279-289
  • 3 Gatehouse P D, Bydder G M. Magnetic resonance imaging of short T2 components in tissue.  Clin Radiol. 2003;  58 1-19
  • 4 Robson M D, Bydder G M. Clinical ultrashort echo time imaging of bone and other connective tissues.  NMR Biomed. 2006;  19 765-780
  • 5 Gold G E, Pauly J M, Macovski A, Herfkens R J. MR spectroscopic imaging of collagen: tendons and knee menisci.  Magn Reson Med. 1995;  34 647-654
  • 6 Reichert I L, Benjamin M, Gatehouse P D et al.. Magnetic resonance imaging of periosteum with ultrashort TE pulse sequences.  J Magn Reson Imaging. 2004;  19 99-107
  • 7 Robson M D, Benjamin M, Gishen P, Bydder G M. Magnetic resonance imaging of the Achilles tendon using ultrashort TE (UTE) pulse sequences.  Clin Radiol. 2004;  59 727-735
  • 8 Gatehouse P D, He T, Hughes S P, Bydder G M. MR imaging of degenerative disc disease in the lumbar spine with ultrashort TE pulse sequences.  MAGMA. 2004;  16 160-166
  • 9 Sussman M S, Pauly J M, Wright G A. Design of practical T2-selective RF excitation (TELEX) pulses.  Magn Reson Med. 1998;  40 890-899
  • 10 Larson P EZ, Gurney P T, Nayak K, Gold G E, Pauly J M, Nishimura D. Designing long-T2 suppression pulses for ultrashort echo time imaging.  Magn Reson Med. 2006;  56 94-103
  • 11 Pauly J M, Conolly S I, Nishimura D, Macovski A. In: Proceedings of the 8th Annual Meeting of the Society of Magnetic Resonance in Medicine, Amsterdam, The Netherlands 1989: 28
  • 12 Wansapura J P, Daniel B L, Pauly J, Butts K. Temperature mapping of frozen tissue using eddy current compensated half excitation RF pulses.  Magn Reson Med. 2001;  46 985-992
  • 13 Glover G H, Pauly J M, Bradshaw K M. Boron-11 imaging with a three dimensional reconstruction method.  J Magn Reson Imaging. 1992;  2 47-52
  • 14 Wong S TS, Roos M S. A strategy for sampling on a sphere applied to 3D selective RF pulse design.  Magn Reson Med. 1994;  32 778-784
  • 15 Brittain J H, Shankaranarayanan A, Ramanan V et al.. Ultrashort TE imaging with single-digit (8 μs) TE. In: Proceedings of the 12th Annual Meeting of the International Society for Magnetic Resonance in Medicine, Kyoto, Japan 2004: 629
  • 16 Rahmer J, Börnert P, Groen J, Bos C. Three-dimensional radial ultrashort echo-time imaging with T2 adapted sampling.  Magn Reson Med. 2006;  55 1075-1082
  • 17 Pruessmann K P, Weiger M, Börnert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories.  Magn Reson Med. 2001;  46 638-651
  • 18 Terk M R, Gober J R, de Verdier H, Simon H E, Colletti P M. Evaluation of suspected musculoskeletal neoplasms using 3D T2-weighted spectral presaturation with inversion recovery.  Magn Reson Imaging. 1993;  11 931-939
  • 19 Rahmer J, Blume U, Börnert P. Selective 3D ultrashort TE imaging: comparison of “dual-echo” acquisition and magnetization preparation for improving short-T 2 contrast.  MAGMA. 2007;  20 83-92
  • 20 Fullerton G D, Cameron I L, Ord V A. Orientation of tendons in the magnetic field and its effects on T2 relaxation times.  Radiology. 1985;  155 433-435
  • 21 Henkelman R M, Stanisz G J, Kim J K, Bronskill M J. Anisotropy of NMR properties of tissues.  Magn Reson Med. 1994;  32 592-601
  • 22 Marshall H, Howarth C, Larkman D J, Herlihy A H, Oatridge A, Bydder G M. Contrast enhanced magic angle MR imaging of the Achilles tendon.  AJR Am J Roentgenol. 2002;  179 187-192
  • 23 Wolff S D, Balaban R S. Magnetization transfer imaging: practical aspects and clinical applications.  Radiology. 1994;  192(3) 593-599
  • 24 Wolff S D, Balaban R S. Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo.  Magn Reson Med. 1989;  10(1) 135-144
  • 25 Henkelman R M, Stanisz G J, Graham S J. Magnetization transfer in MRI: a review.  NMR Biomed. 2001;  14(2) 57-64
  • 26 Liepinsh E, Otting G. Proton exchange rates from amino acid side chains–implications for image contrast.  Magn Reson Med. 1996;  35(1) 30-42
  • 27 Sled J G, Pike G B. Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI.  Magn Reson Med. 2001;  46(5) 923-931
  • 28 Edzes H T, Samulski E T. Cross relaxation and spin diffusion in the proton NMR or hydrated collagen.  Nature. 1977;  265(5594) 521-523
  • 29 Graham S J, Stanisz G J, Kecojevic A, Bronskill M J, Henkelman R M. Analysis of changes in MR properties of tissues after heat treatment.  Magn Reson Med. 1999;  42(6) 1061-1071
  • 30 Graham S J, Henkelman R M. Understanding pulsed magnetization transfer.  J Magn Reson Imaging. 1997;  7(5) 903-912
  • 31 Henkelman R M, Huang X, Xiang Q S, Stanisz G J, Swanson S D, Bronskill M J. Quantitative interpretation of magnetization transfer.  Magn Reson Med. 1993;  29(6) 759-766
  • 32 Stanisz G J, Odrobina E E, Pun J et al.. T1, T2 relaxation and magnetization transfer in tissue at 3T.  Magn Reson Med. 2005;  54(3) 507-512
  • 33 Bieri O, Scheffler K. Optimized balanced steady-state free precession magnetization transfer imaging.  Magn Reson Med. 2007;  58(3) 511-518
  • 34 Bieri O, Scheffler K. On the SSFP signal. Presented at the Proceedings of the International Society for Magnetic Resonance in Medicine, 2007; Berlin, Germany
  • 35 Wolff S D, Chesnick S, Frank J A, Lim K O, Balaban R S. Magnetization transfer contrast: MR imaging of the knee.  Radiology. 1991;  179(3) 623-628
  • 36 Gray M L, Burstein D, Lesperance L M, Gehrke L. Magnetization transfer in cartilage and its constituent macromolecules.  Magn Reson Med. 1995;  34(3) 319-325
  • 37 Lattanzio P J, Marshall K W, Damyanovich A Z, Peemoeller H. Macromolecule and water magnetization exchange modeling in articular cartilage.  Magn Reson Med. 2000;  44(6) 840-851
  • 38 Palmieri F, De Keyzer F, Maes F, Van Breuseghem I. Magnetization transfer analysis of cartilage repair tissue: a preliminary study.  Skeletal Radiol. 2006;  35(12) 903-908
  • 39 Wachsmuth L, Juretschke H P, Raiss R X. Can magnetization transfer magnetic resonance imaging follow proteoglycan depletion in articular cartilage?.  MAGMA. 1997;  5(1) 71-78
  • 40 Einstein A. Ueber die von der molekular-kinetischen Theorie der Wärme geforderte Bewegung von ruhenden Flüssigkeiten suspendierten Teilchen.  Ann d Phys. 1905;  17 549-560
  • 41 Stejskal E O, Tanner J E. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient.  J Chem Phys. 1965;  42 288-292
  • 42 Le Bihan D, Mangin J F, Poupon C et al.. Diffusion tensor imaging: concepts and applications.  J Magn Reson Imaging. 2001;  13 534-546
  • 43 Buxton R B. The diffusion sensitivity of fast steady-state free precession imaging.  Magn Reson Med. 1993;  29 235-243
  • 44 Zur Y, Bosak E, Kaplan N. A new diffusion SSFP imaging technique.  Magn Reson Med. 1997;  37(5) 716-722
  • 45 Miller K L, Hargreaves B A, Gold G E, Pauly J M. Steady-state diffusion-weighted imaging of in vivo knee cartilage.  Magn Reson Med. 2004;  51(2) 394-398
  • 46 Filidoro L, Dietrich O, Weber J et al.. High-resolution diffusion tensor imaging of human patellar cartilage: feasibility and preliminary findings.  Magn Reson Med. 2005;  53(5) 993-998
  • 47 Deng X, Farley M, Nieminen M T, Gray M, Burstein D. Diffusion tensor imaging of native and degenerated human articular cartilage.  Magn Reson Imaging. 2007;  25(2) 168-171
  • 48 Knauss R, Schiller J, Fleischer G et al.. Self-diffusion of water in cartilage and cartilage components as studied by pulsed field gradient NMR.  Magn Reson Med. 1999;  41 285-292
  • 49 Glaser C. New techniques for cartilage imaging: T2 relaxation time and diffusion-weighted MR imaging.  Radiol Clin North Am. 2005;  43(4) 641-653
  • 50 Leeds N E, Kumar A J, Zhou X J, McKinnon G C. Magnetic resonance imaging of benign spinal lesions simulating metastasis: role of diffusion-weighted imaging.  Top Magn Reson Imaging. 2000;  11(4) 224-234
  • 51 Baur A, Stäbler A, Brüning R et al.. Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures.  Radiology. 1998;  207(2) 349-356
  • 52 Spuentrup E, Buecker A, Adam G, van Vaals J J, Guenther R W. Diffusion-weighted MR imaging for differentiation of benign fracture edema and tumor infiltration of the vertebral body.  AJR Am J Roentgenol. 2001;  176(2) 351-358
  • 53 Baur A, Huber A, Ertl-Wagner B et al.. Diagnostic value of increased diffusion weighting of a steady-state free precession sequence for differentiating acute benign osteoporotic fractures from pathologic vertebral compression fractures.  AJNR Am J Neuroradiol. 2001;  22(2) 366-372
  • 54 Herneth A M, Ringl H, Memarsadeghi M et al.. Diffusion weighted imaging in osteoradiology.  Top Magn Reson Imaging. 2007;  18(3) 203-212

Klaus Scheffler Ph.D. 

Division of Radiological Physics, Institute of Radiology, University Hospital, University of Basel

Petersgraben 4, CH–4031 Basel, Switzerland

Email: klaus.scheffler@unibas.ch

    >