Subscribe to RSS
DOI: 10.1055/s-0028-1083201
One-Pot Synthesis of Internal Conjugated (Z)-Enynyltrimethylsilanes Possessing Aryl, Cycloalkenyl, (E)- or (Z)-Alk-1-enyl Moieties on the sp Carbon Atom via Two Types of Cross-Coupling Reaction
Publication History
Publication Date:
23 October 2008 (online)
Abstract
Described herein is an operationally simple and mild method for the stereospecific synthesis of internal conjugated (Z)-enynyltrimethylsilanes whose conjugation is extended away from the distal alkynyl carbon atom. This protocol involves two types of cross-coupling reaction, a Suzuki-type reaction and a sila-Sonogashira reaction, and the desired synthesis can be performed in a one-pot manner. Thus, the copper-mediated cross-coupling reaction of dicyclohexyl[(Z)-1-(trimethylsilyl)alk-1-enyl]boranes with (trimethylsilyl)ethynyl bromide is carried out in the presence of aqueous lithium hydroxide at -15 ˚C to room temperature, resulting in the stereospecific formation of (Z)-1,3-bis(trimethylsilyl)alk-3-en-1-ynes. Subsequent reaction is allowed to proceed without isolation of the enynes. Thus, palladium/copper-catalyzed cross-coupling reactions with aryl iodides, cycloalk-1-enyl triflates, and (E)- and (Z)-alk-1-enyl iodides can be accomplished in the presence of either 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) or tetrabutylammonium fluoride (TBAF) at ambient temperature to provide the corresponding internal conjugated (Z)-enynyltrimethylsilanes possessing one more sp-sp² carbon bond.
Key words
(Z)-enynyltrimethylsilane - (trimethylsilyl)ethynyl bromide - (Z)-1,3-bis(trimethylsilyl)alk-3-en-1-yne - Suzuki-type reaction - sila-Sonogashira reaction
- For example, see:
-
1a
Fleming I.Dunogues J.Smithers R. Org. React. 1989, 37: 57 -
1b
Blumenkopf TA.Overman LE. Chem. Rev. 1986, 86: 857 -
1c
Babudri F.Fiandanese V.Marchese G.Punzi A. Synlett 1995, 817 ; and references therein - For example, see:
-
2a
Denmark SE.Sweis RF. In Metal-Catalyzed Cross-Coupling Reactions Vol. 1:de Meijere A.Diederich F. Wiley-VCH; Weinheim: 2004. p.163 -
2b
Denmark SE.Tymonko SA. J. Am. Chem. Soc. 2005, 127: 8004 -
2c
Itami K.Yoshida J. Synlett 2006, 157 - 3
Kusumoto T.Nishida K.Hiyama T. Bull. Chem. Soc. Jpn. 1990, 63: 1947 - 4
Delas C.Urabe H.Sato F. Chem. Commun. 2002, 272 - 5
Ogoshi S.Ueta M.Oka M.Kurosawa H. Chem. Commun. 2004, 2732 - 6
Hoshi M.Kawamura N.Shirakawa K. Synthesis 2006, 1961 -
7a
Hatanaka Y.Hiyama T. J. Org. Chem. 1988, 53: 918 -
7b
Hatanaka Y.Matsui K.Hiyama T. Tetrahedron Lett. 1989, 30: 2403 -
8a
Nishihara Y.Ikegashira K.Mori A.Hiyama T. Chem. Lett. 1997, 1233 -
8b
Nishihara Y.Ikegashira K.Hirabayashi K.Ando J.Mori A.Hiyama T. J. Org. Chem. 2000, 65: 1780 -
8c
Nishihara Y.Ando J.Kato T.Mori A.Hiyama T. Macromolecules 2000, 33: 2779 -
8d
Yang C.Nalan SP. Organometallics 2002, 21: 1020 -
8e
Mio MJ.Kopel LC.Braun JB.Gadzikwa TL.Hull KL.Brisbois RG.Markworth CJ.Grieco PA. Org. Lett. 2002, 4: 3199 -
9a
Mori A.Kondo T.Kato Y.Nishihara Y. Chem. Lett. 2001, 286 -
9b
Bertus P.Halbes U.Pale P. Eur. J. Org. Chem. 2001, 4391 -
9c
Halbes U.Bertus P.Pale P. Tetrahedron Lett. 2001, 42: 8641 -
9d
Halbes U.Pale P. Tetrahedron Lett. 2002, 43: 2039 - 12
Hoshi M.Nakayabu H.Shirakawa K. Synthesis 2005, 1991 -
13a
Miyaura N.Suzuki A. Chem. Rev. 1995, 95: 2457 -
13b
Suzuki A. In Metal-Catalyzed Cross-Coupling ReactionsDiederich F.Stang PJ. Wiley-VCH; Weinheim: 1998. p.49 -
13c
Miyaura N. In Metal-Catalyzed Cross-Coupling Reactions, Vol. 1de Meijere A.Diederich F. Wiley-VCH; Weinheim: 2004. p.41 - 15
Cai M.Hao W.Zhao H.Song C. J. Chem. Res., Synop. 2003, 485 - 16
Hofmeister H.Annen K.Laurent H.Wiechert R. Angew. Chem., Int. Ed. Engl. 1984, 23: 727 - 17
Zweifel G.Backlund SJ. J. Am. Chem. Soc. 1977, 99: 3184 -
18a
Zweifel G.Whitney CC. J. Am. Chem. Soc. 1967, 89: 2753 -
18b
Hoshi M.Shirakawa K. Chem. Commun. 2002, 2146 - 19
Hoshi M.Arase A. Synth. Commun. 1997, 27: 567 -
20a
McMurry JE.Scott WJ. Tetrahedron Lett. 1983, 24: 979 -
20b
Ritter K. Synthesis 1993, 735 -
21a
Zweifel G.Brown HC. Org. React. 1963, 13: 1 -
21b
Brown HC. Organic Syntheses via Boranes Wiley-Interscience; New York: 1975.
References
Compound 2a was formed in about 90% GC yield based on Me3SiC≡CBr employed; see ref. 6.
11Addition of CuI was not necessary because CuI had already been used for the cross-coupling reaction of 1a with Me3SiC≡CBr.
14Compound 2a was formed in 82% (0.375 mL of H2O) or 84% GC yield (0.75 mL of H2O), based on Me3SiC≡CBr employed.
22After column chromatography, the product in eluates should be stored in the refrigerator to avoid decomposition.