Synthesis 2008(22): 3591-3600  
DOI: 10.1055/s-0028-1083201
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

One-Pot Synthesis of Internal Conjugated (Z)-Enynyltrimethylsilanes Possessing Aryl, Cycloalkenyl, (E)- or (Z)-Alk-1-enyl Moieties on the sp Carbon Atom via Two Types of Cross-Coupling Reaction

Masayuki Hoshi*, Tomohiko Iizawa, Mitsuhiro Okimoto, Kazuya Shirakawa
Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan
Fax: +81(157)247719; e-Mail: hoshi-m@chem.kitami-it.ac.jp;
Further Information

Publication History

Received 14 July 2008
Publication Date:
23 October 2008 (online)

Abstract

Described herein is an operationally simple and mild method for the stereospecific synthesis of internal conjugated (Z)-enynyltrimethylsilanes whose conjugation is extended away from the distal alkynyl carbon atom. This protocol involves two types of cross-coupling reaction, a Suzuki-type reaction and a sila-Sonogashira reaction, and the desired synthesis can be performed in a one-pot manner. Thus, the copper-mediated cross-coupling reaction of dicyclohexyl[(Z)-1-(trimethylsilyl)alk-1-enyl]boranes with (trimethylsilyl)ethynyl bromide is carried out in the presence of aqueous lithium hydroxide at -15 ˚C to room temperature, resulting in the stereospecific formation of (Z)-1,3-bis(trimethylsilyl)alk-3-en-1-ynes. Subsequent reaction is allowed to proceed without isolation of the enynes. Thus, palladium/copper-catalyzed cross-coupling reactions with aryl iodides, cycloalk-1-enyl triflates, and (E)- and (Z)-alk-1-enyl iodides can be accomplished in the presence of either 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) or tetrabutylammonium fluoride (TBAF) at ambient temperature to provide the corresponding internal conjugated (Z)-enynyltrimethylsilanes possessing one more sp-sp² carbon bond.

    References

  • For example, see:
  • 1a Fleming I. Dunogues J. Smithers R. Org. React.  1989,  37:  57 
  • 1b Blumenkopf TA. Overman LE. Chem. Rev.  1986,  86:  857 
  • 1c Babudri F. Fiandanese V. Marchese G. Punzi A. Synlett  1995,  817 ; and references therein
  • For example, see:
  • 2a Denmark SE. Sweis RF. In Metal-Catalyzed Cross-Coupling Reactions   Vol. 1:  de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2004.  p.163 
  • 2b Denmark SE. Tymonko SA. J. Am. Chem. Soc.  2005,  127:  8004 
  • 2c Itami K. Yoshida J. Synlett  2006,  157 
  • 3 Kusumoto T. Nishida K. Hiyama T. Bull. Chem. Soc. Jpn.  1990,  63:  1947 
  • 4 Delas C. Urabe H. Sato F. Chem. Commun.  2002,  272 
  • 5 Ogoshi S. Ueta M. Oka M. Kurosawa H. Chem. Commun.  2004,  2732 
  • 6 Hoshi M. Kawamura N. Shirakawa K. Synthesis  2006,  1961 
  • 7a Hatanaka Y. Hiyama T. J. Org. Chem.  1988,  53:  918 
  • 7b Hatanaka Y. Matsui K. Hiyama T. Tetrahedron Lett.  1989,  30:  2403 
  • 8a Nishihara Y. Ikegashira K. Mori A. Hiyama T. Chem. Lett.  1997,  1233 
  • 8b Nishihara Y. Ikegashira K. Hirabayashi K. Ando J. Mori A. Hiyama T. J. Org. Chem.  2000,  65:  1780 
  • 8c Nishihara Y. Ando J. Kato T. Mori A. Hiyama T. Macromolecules  2000,  33:  2779 
  • 8d Yang C. Nalan SP. Organometallics  2002,  21:  1020 
  • 8e Mio MJ. Kopel LC. Braun JB. Gadzikwa TL. Hull KL. Brisbois RG. Markworth CJ. Grieco PA. Org. Lett.  2002,  4:  3199 
  • 9a Mori A. Kondo T. Kato Y. Nishihara Y. Chem. Lett.  2001,  286 
  • 9b Bertus P. Halbes U. Pale P. Eur. J. Org. Chem.  2001,  4391 
  • 9c Halbes U. Bertus P. Pale P. Tetrahedron Lett.  2001,  42:  8641 
  • 9d Halbes U. Pale P. Tetrahedron Lett.  2002,  43:  2039 
  • 12 Hoshi M. Nakayabu H. Shirakawa K. Synthesis  2005,  1991 
  • 13a Miyaura N. Suzuki A. Chem. Rev.  1995,  95:  2457 
  • 13b Suzuki A. In Metal-Catalyzed Cross-Coupling Reactions   Diederich F. Stang PJ. Wiley-VCH; Weinheim: 1998.  p.49 
  • 13c Miyaura N. In Metal-Catalyzed Cross-Coupling Reactions, Vol. 1   de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2004.  p.41 
  • 15 Cai M. Hao W. Zhao H. Song C. J. Chem. Res., Synop.  2003,  485 
  • 16 Hofmeister H. Annen K. Laurent H. Wiechert R. Angew. Chem., Int. Ed. Engl.  1984,  23:  727 
  • 17 Zweifel G. Backlund SJ. J. Am. Chem. Soc.  1977,  99:  3184 
  • 18a Zweifel G. Whitney CC. J. Am. Chem. Soc.  1967,  89:  2753 
  • 18b Hoshi M. Shirakawa K. Chem. Commun.  2002,  2146 
  • 19 Hoshi M. Arase A. Synth. Commun.  1997,  27:  567 
  • 20a McMurry JE. Scott WJ. Tetrahedron Lett.  1983,  24:  979 
  • 20b Ritter K. Synthesis  1993,  735 
  • 21a Zweifel G. Brown HC. Org. React.  1963,  13:  1 
  • 21b Brown HC. Organic Syntheses via Boranes   Wiley-Interscience; New York: 1975. 
10

Compound 2a was formed in about 90% GC yield based on Me3SiC≡CBr employed; see ref. 6.

11

Addition of CuI was not necessary because CuI had already been used for the cross-coupling reaction of 1a with Me3SiC≡CBr.

14

Compound 2a was formed in 82% (0.375 mL of H2O) or 84% GC yield (0.75 mL of H2O), based on Me3SiC≡CBr employed.

22

After column chromatography, the product in eluates should be stored in the refrigerator to avoid decomposition.