Abstract
A method for the thiolysis of nitriles by applying Lawesson’s
reagent and facilitated by the addition of boron trifluoride-diethyl
ether complex is reported. The method opens an easy access to primary
thioamides. Aromatic, benzylic, and aliphatic nitriles were converted
into the corresponding thioamides in high to quantitative yields
(even in unfavorable cases, e.g., ortho- substituted
benzonitriles). The reaction was performed in 1,2-dimethoxyethane-tetrahydrofuran
or toluene-diethyl ether solvent mixtures at 20-50 ˚C,
and exhibited considerable selectivity in the case of multifunctional
nitrile substrates, such as cyanomethyl N -acetylphenylalaninate,
benzoylacetonitrile, 4-cyanobenzamide, 4-acetyl-benzonitrile,
or pent-3-enenitrile.
Key words
thioamides - nitriles - Lawesson’s
reagent - Lewis acid complex - sulfur-transferring
reagents
References 1 These authors contributed equally.
2a
Goswami S.
Maity AC.
Das NK.
J. Sulfur Chem.
2007,
28:
233
2b
Kaboudin B.
Elhamifar D.
Synthesis
2006,
224
2c
Boys ML.
Downs VL.
Synth.
Commun.
2006,
36:
295
2d
Manaka A.
Masakazu S.
Synth. Commun.
2005,
35:
761
2e
Bagley MC.
Chapaneri K.
Glover C.
Merritt EA.
Synlett
2004,
2615
2f
Crane LJ.
Anastassiadou M.
Stigliani JL.
Baziard-Mouysset G.
Payard M.
Tetrahedron
2004,
60:
5325
2g
Liboska R.
Zyka D.
Bobek M.
Synthesis
2002,
1649
3
Jagodzinski TS.
Chem.
Rev.
2003,
103:
197
4a
Wang F.
Langley R.
Gulten G.
Dover LG.
Besra GS.
Jabobs WR.
Sacchettini JC.
J. Exp. Med.
2007,
204:
73
4b
Frenois F.
Engohang-Ndong J.
Locht C.
Baulard AR.
Villeret V.
Mol.
Cell
2004,
16:
301
5a
Cassar L.
Panossian S.
Giordano C.
Synthesis
1978,
917
5b
Walther W.
Bode KD.
Angew. Chem.
1966,
78:
517
5c
Fairfull AES.
Lowe JL.
Peak DA.
J. Chem. Soc.
1952,
742
6
Ralston AW.
Vander Wal RJ.
McCorkle MR.
J. Org. Chem.
1939,
4:
68
7
Brillon D.
Synth.
Commun.
1992,
22:
1397
8a
Benner SA.
Tetrahedron Lett.
1981,
22:
1851
8b
Pudovik AN.
Cherkasov RA.
Sudakova TM.
Evstaf’ev GI.
Dokl.
Akad. Nauk SSSR
1973,
211:
113
8c
LaMattina JL.
Mularski CJ.
J.
Org. Chem.
1986,
51:
413
9a
Zabirov NG.
Shamsevaleev FM.
Cherkasov RA.
Zh.
Obshch. Khim.
1992,
62:
71
9b
Yousif NM.
Tetrahedron
1989,
45:
4599
9c
Shabana R.
Meyer HJ.
Lawesson SO.
Phosphorus Sulfur Relat. Elem.
1985,
25:
297
10
Gauthier JY.
Lebel H.
Phosphorus, Sulfur Silicon Relat. Elem.
1994,
95:
325
11
Shiao MJ.
Lai LL.
Ku WS.
Lin PY.
Hwu JR.
J. Org.
Chem.
1993,
58:
4742
12
Pedersen BS.
Scheibye S.
Nilsson NH.
Lawesson
S.-O.
Bull. Soc. Chim.
Belg.
1978,
87:
223
13a
Ozturk T.
Ertas E.
Mert O.
Chem. Rev.
2007,
107:
5210
13b
Cherkasov RA.
Kutyrev GA.
Pudovik AN.
Tetrahedron
1985,
41:
2567
13c
Cava MP.
Levinson MI.
Tetrahedron
1985,
41:
5061
14a
Mohamed NR.
Kamel EM.
Erian AW.
Nada AA.
Egypt. J. Chem.
2003,
46:
873
14b
Abdel-Malek HA.
Heterocycl. Commun.
2003,
9:
457
14c
Abd El Rahman NM.
Heterocycl. Commun.
2002,
8:
465
14d
Khidre MD.
Yakout El.-SMA.
Mahran MRH.
Phosphorus,
Sulfur Silicon Relat. Elem.
1998,
133:
119
14e
Deng SL.
Chen RY.
Synthesis
2002,
2527
15a
Panuschka C.
Ph. D. Thesis
University
of Vienna;
Austria:
2007.
15b
Dorner S.
Panuschka C.
Schmid W.
Barta A.
Nucleic Acids Res.
2003,
31:
6536
16a On
the BF3 ˙OEt2 -mediated conversion
of nitriles into amides, see: Hauser CR.
Hoffenberg DS.
J. Org. Chem.
1955,
20:
1448
16b on the BF3 ˙OEt2 -promoted
conversion of nitriles into esters, see: Jayachitra G.
Yasmeen N.
Srinivasa Rao K.
Ralte SL.
Srinivasan R.
Singh AK.
Synth. Commun.
2003,
33:
3461
17
LaMattina JL.
Mularski CJ.
J. Org. Chem.
1986,
51:
413
18 NMR spectroscopic data of 4-cyanothiobenzamide: ¹ H NMR
(400 MHz, CDCl3 ): δ = 7.21
(s, CSNH), 7.70 (d, J = 8.4
Hz, 2 H, H2, H6), 7.76 (s, CSNH), 7.93 (d, J = 8.5 Hz,
2 H, H3, H5). ¹³ C NMR (400 MHz, CDCl3 ): δ = 115.5 (s, C CN), 118.3 (s, CN), 127.8 (d, C HCCSNH2 ), 132.7 (d, C HCCN), 143.3 (s, C CSNH2 ),
201.0 (s, CSNH2 ).
For NMR data of keto-enol
tautomers of benzoylacetones, see:
19a
Mahalingam SM.
Aidhen IS.
J.
Org. Chem.
2006,
71:
349
19b
Wiles C.
Watts P.
Haswell SJ.
Pombo-Villar E.
Tetrahedron Lett.
2002,
43:
2945
19c
Katayama S.
Fukuda T.
Watanabe T.
Yamauchi M.
Synthesis
1988,
178
20
Pedersen BS.
Lawesson SO.
Tetrahedron
1979,
35:
2433
21a
Papadopoulos EP.
J. Org. Chem.
1976,
41:
962
21b
Cashman JR.
Hanzlik RP.
J.
Org. Chem.
1982,
47:
4645
21c
Feiring AE.
J. Org. Chem.
1976,
41:
148
22a
Tamura Y.
Kawasaki T.
Adachi M.
Kita Y.
Synthesis
1979,
887
22b
Ogura K.
Ito Y.
Tsuchihashi G.
Synthesis
1980,
736
23
Lehr H.
Guex W.
Erlenmeyer H.
Helv.
Chim. Acta
1945,
28:
1281
24
Tornetta B.
Ann.
Chim. (Rome)
1961,
51:
930
25
Spychala J.
Tetrahedron
2000,
56:
7981
26
Brownlee RTC.
Sadek M.
Aust. J. Chem.
1981,
34:
1593
27
Okamiya J.
Nippon
Kagaku Zasshi
1965,
86:
315
28
Kaleta Z.
Makowski BT.
Soos T.
Dembinski R.
Org. Lett.
2006,
8:
1625
29
Soh CH.
Chui WK.
Lam Y.
J.
Comb. Chem.
2006,
8:
464
30
Waisser K.
Celadnik M.
Palat K.
Urban J.
Cesko-Slov. Farm.
1980,
29:
332
31
Tamura Y.
Kawasaki T.
Adachi M.
Kita Y.
Synthesis
1979,
887
32
Branchini BR.
Magyar RA.
Marcantonio KM.
Newberry KJ.
Stroh JG.
Hinz LK.
Murtiashaw MH.
J. Biol. Chem.
1997,
272:
19359