Synthesis 2009(5): 721-730  
DOI: 10.1055/s-0028-1083354
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of 5,7-Dichloro-6-azaindoles and Functionalization via a Highly Selective Lithium-Chlorine Exchange

Nicolas Lachance*, Louis-Philippe Bonhomme-Beaulieu, Pascal Joly
Merck Frosst Centre for Therapeutic Research, P.O. Box 1005, Pointe Claire-Dorval, QC, H9R 4P8, Canada
Fax: +1(514)4284900; e-Mail: nicolas_lachance@merck.com;
Further Information

Publication History

Received 8 October 2008
Publication Date:
02 February 2009 (online)

Abstract

The synthesis of a range of novel 5,7-dichloro-6-azaindoles through the use of a Fischer cyclization with pyridine hydrochloride in N-methylpyrrolidin-2-one is described. Dichloro-6-azaindoles are versatile compounds that can be selectively substituted through a palladium-catalyzed cross-coupling reaction or a high-yielding lithium-chlorine exchange.

    References

  • For leading references to the physiological activity of indole derivatives, see:
  • 1a Sturino CF. O’Neill GP. Lachance N. Boyd MJ. Berthelette C. Labelle M. Li LH. Roy B. Scheigetz J. Tsou NN. Bateman KP. Day SH. Levesque JF. Seto C. Silva JM. Carriere M. Denis D. Greig GM. Kargman SL. Lamontagne S. Mathieu M. Sawyer N. Slipetz DM. Jones TR. Mcauliffe M. Piechuta H. Nicoll-Griffith DA. Wang Z. Zamboni RJ. Young RN. Metters KM. J. Med. Chem.  2007,  50:  794 
  • 1b Van Zandt MC. Jones ML. Gunn DE. Geraci LS. Jones JH. Sawicki DR. Sredy J. Jacot JL. DiCioccio AT. Petrova T. Mitschler A. Podjarny AD. J. Med. Chem.  2005,  48:  3141 
  • 1c Kuethe JT. Wong A. Qu C. Smitrovich J. Davies IW. Hughes DL. J. Org. Chem.  2005,  70:  2555 
  • 2 For review on indoles synthesis, see: Gribble GW. J. Chem. Soc., Perkin Trans. 1  2000,  1045 ; and references therein
  • For recent reviews on palladium-catalyzed synthesis of indoles, see:
  • 3a Humphrey GR. Kuethe JT. Chem. Rev.  2006,  106:  2875 ; and references therein
  • 3b Cacchi S. Fabrizi G. Chem. Rev.  2005,  105:  2873 ; and references therein
  • For leading reference to the physiological activity of azaindole derivatives, see:
  • 4a Kim KS. Zhang L. Schmidt R. Cai Z.-W. Wei D. Williams DK. Lombardo LJ. Trainor GL. Xie D. Zhang Y. An Y. Sack JS. Tokarski JS. Darienzo C. Kamath A. Marathe P. Zhang Y. Lippy J. Jeyaseelan RSr. Wautlet B. Henley B. Gullo-Brown J. Manne V. Hunt JT. Fargnoli J. Borzilleri RM. J. Med. Chem.  2008,  51:  5330 
  • 4b Lu R.-J. Tucker JA. Zinevitch T. Kirichenko O. Konoplev V. Kuznetsova S. Sviridov S. Pickens J. Tandel S. Brahmachary E. Yang Y. Wang J. Freel S. Fisher S. Sullivan A. Zhou J. Stanfield-Oakley S. Greenberg M. Bolognesi D. Bray B. Koszalka B. Jeffs P. Khasanov A. Ma Y.-A. Jeffries C. Liu C. Proskurina T. Zhu T. Chucholowski A. Li R. Sexton C. J. Med. Chem.  2007,  50:  6535 
  • 4c Cooper LC. Chicchi GG. Dinnell K. Elliott JM. Hollingworth GJ. Kurtz MM. Locker KL. Morrison D. Shaw DE. Tsao K.-L. Watt AP. Williams AR. Swain CJ. Bioorg. Med. Chem. Lett.  2001,  11:  1233 
  • For reviews on azaindoles synthesis, see:
  • 5a Popowycz F. Mérour J.-Y. Joseph B. Tetrahedron  2007,  63:  8689 
  • 5b Song JJ. Reeves JT. Gallou F. Tan Z. Yee NK. Senanayake CH. Chem. Soc. Rev.  2007,  36:  1120 
  • 5c Popowycz F. Routier S. Joseph B. Mérour J.-Y. Tetrahedron  2007,  63:  1031 
  • 5d Le Hyaric M. Vieira de Almeida M. Nora de Souza MV. Quim. Nova  2002,  25:  1165 
  • 5e Mérour J.-Y. Joseph B. Curr. Org. Chem.  2001,  5:  471 ; and references therein
  • 6 Lachance N. April M. Joly M.-A. Synthesis  2005,  2571 
  • 7 Roy PJ. Dufresne C. Lachance N. Leclerc J.-P. Boisvert M. Wang Z. Leblanc Y. Synthesis  2005,  2751 
  • 8 Seela F. Bourgeois W. Synthesis  1988,  938 
  • 9a Charrier N. Demont E. Dunsdon R. Maile G. Naylor A. O’Brien A. Redshaw S. Theobald P. Vesey D. Walter D. Synthesis  2006,  3467 
  • 9b Allegretti M. Arcadi A. Marinelli F. Nicolini L. Synlett  2001,  609 
  • 10 Nazaré M. Schneider C. Lindenschmidt A. Will DW. Angew. Chem. Int. Ed.  2004,  43:  4526 
  • 11a Ishii H. Acc. Chem. Res.  1981,  14:  275 
  • 11b Yakhontov LN. Marshalkin MF. Chem. Heterocycl. Compd. (Engl. Transl.)  1972,  8:  1486 
  • 11c Kelly AH. Parrick J. J. Chem. Soc., C  1970,  303 
  • 14 Tacconi G. Perotti A. Ann. Chim. (Rome)  1965,  55:  1223 
  • For selective lithium-bromine exchange on indoles, see:
  • 15a Li L. Martins A. Tetrahedron Lett.  2003,  44:  5987 
  • 15b Li L. Martins A. Tetrahedron Lett.  2003,  44:  689 
  • 16 Peterson MA. Mitchell JR. J. Org. Chem.  1997,  62:  8237 
  • 17a Naruse Y. Ito Y. Inagaki S. J. Org. Chem.  1999,  64:  639 
  • 17b Naruse Y. Ito Y. Inagaki S. J. Org. Chem.  1991,  56:  2256 
  • 17c Katritzky AR. Rewcastle GW. Vazquez de Miguel LM. J. Org. Chem.  1988,  53:  794 
  • 18 L’Heureux A. Thibault C. Ruel R. Tetrahedron Lett.  2004,  45:  2317 
  • For leading references on ortho-lithiation of halogenated pyridines, see:
  • 19a Pierrat P. Gros P. Fort Y. Synlett  2004,  2319 
  • 19b Bracher F. J. Heterocycl. Chem.  1993,  30:  157 
  • 19c Mallet M. J. Organomet. Chem.  1991,  406:  49 
  • 19d Review: Mongin F. Quéguiner G. Tetrahedron  2001,  57:  4059 ; and references therein
  • 20 Schlosser M. Heiss C. Eur. J. Org. Chem.  2003,  4618 
  • 21 Guram AS. Wang X. Bunel EE. Faul MM. Larsen RD. Martinelli MJ. J. Org. Chem.  2007,  72:  5104 
  • 23 Fort Y. Rodriguez AL. J. Org. Chem.  2003,  68:  4918 
12

The use of a condenser is not recommended.

13

Typically, aminopyridine 1 was isolated in less than 5%.

22

Starting material 6 was observed in less than 5% on the ¹H NMR of the unpurified reaction mixture.