References and Notes
1
Kita M.
Kondo M.
Koyama T.
Yamada K.
Matsumoto T.
Lee KH.
Woo JT.
Uemura D.
J. Am. Chem. Soc.
2004,
126:
4794
2
Rowan R.
Powers DA.
Science
1991,
251:
1348
RANKL induces osteoclast-like multinucleated
cell formation in cultures of bone marrow cells. See:
3a
Yasuda H.
Shima N.
Nakagawa N.
Yamaguchi K.
Kiosaki M.
Mochizuki S.-i.
Tomoyasu A.
Yano K.
Goto M.
Murakami A.
Tsuda E.
Morinaga T.
Higashio K.
Udagawa N.
Takahashi N.
Suda T.
Proc. Natl. Acad. Sci. U. S. A.
1998,
95:
3597
3b
Lancey DL.
Timms E.
Tan HL.
Kelley MJ.
Dunstan CR.
Burgess T.
Elliott R.
Colombero A.
Elliott G.
Scully S.
Hsu H.
Sullivan J.
Hawkins N.
Davy E.
Capparelli C.
Eli A.
Qian YX.
Kaufman S.
Sarosi I.
Shalhoub V.
Senaldi G.
Guo J.
Delaney J.
Boyle WJ.
Cell
1998,
93:
165
3c
Hsu H.
Lacey DL.
Dunstan CR.
Solovyev I.
Colombero A.
Timms E.
Tan H.-L.
Elliott G.
Kelley MJ.
Sarosi I.
Wang L.
Xia X.-Z.
Elliott R.
Chiu L.
Black T.
Scully S.
Capparelli C.
Morony S.
Shimamoto G.
Bass MB.
Boyle WJ.
Proc. Natl. Acad. Sci.
U. S. A.
1999,
96:
3540
4a
Kita M.
Uemura D.
Chem.
Lett.
2005,
34:
454
4b
Kita M.
Ohishi N.
Washida K.
Kondo M.
Koyama T.
Yamada K.
Uemura D.
Bioorg. Med.
Chem.
2005,
13:
5253
Reported total syntheses of symbioimine,
see:
5a
Varseev GN.
Maier ME.
Angew.
Chem. Int. Ed.
2006,
45:
4767
5b
Zou Y.
Che Q.
Snider BB.
Org.
Lett.
2006,
24:
5605
5c
Kim J.
Thomson RJ.
Angew. Chem. Int.
Ed.
2007,
46:
3104
For other synthetic studies, see:
5d
Snider BB.
Che Q.
Angew. Chem.
Int. Ed.
2006,
45:
932
5e
Sakai E.
Araki K.
Takamura H.
Uemura D.
Tetrahedron Lett.
2006,
47:
6343
For our own efforts along with 2,3-dihydropyridine strategy,
see:
5f
Born S.
Kobayashi Y.
Synlett
2008,
2479
6a
Gras J.-L.
Bertrand M.
Tetrahedron
Lett.
1979,
4549
6b
Gras J.-L.
J.
Org. Chem.
1981,
46:
3738
6c
Taber
DF.
Kong S.
Malcolm SC.
J. Org. Chem.
1998,
63:
7953
6d
Coe JW.
Roush WR.
J. Org. Chem.
1989,
54:
915
6e
Frankowski KJ.
Golden JE.
Zeng Y.
Lei Y.
Aubé J.
J. Am. Chem. Soc.
2008,
130:
6018
7 Sammakia showed an interesting method
to prepare an octalone core structure of dihydrocompactin, see: Sammakia T.
Johns DM.
Kim G.
Berliner MA.
J.
Am. Chem. Soc.
2005,
127:
6504
Preparation of (E )-6-iodohex-5-en-1-ol:
8a
Lipshutz BH.
Kell R.
Ellsworth EL.
Tetrahedron Lett.
1990,
31:
7257
8b
Nishida A.
Shirato F.
Nakagawa M.
Tetrahedron: Asymmetry
2000,
11:
3789
9 Synthesis of pinacolboronate: Shirakawa K.
Arase A.
Hoshi M.
Synthesis
2004,
1814
10a
More JD.
Finney NS.
Org.
Lett.
2002,
4:
3001
10b
Frigerio M.
Santagostino M.
Sputore S.
J.
Org. Chem.
1999,
64:
4537
11 Preparation of β-ketophosphonate: Hosokawa S.
Seki M.
Fukuda H.
Tatsuta K.
Tetrahedron
Lett.
2006,
47:
2439
Attempted Diels-Alder
reaction of 11 under conventional conditions:
12a xylene, reflux, 2 d,
and
12b MeAlCl2 , CH2 Cl2 , -78 ˚C.
13 Microwave instrument: CEM Discovery
Labmate microwave system.
14 Microwave-assisted heating of 11 in ethanol provided the Diels-Alder
adducts 12a and 12b in
69% with exo /endo = 1:2.
15 The minor diastereomer was assumed
to be the exo -adduct. We do not exclude
the possibility of epimerization of the major kinetic endo -adduct 14 to
the minor exo -adduct under the reaction
conditions.
16 As expected, the bulky dienophile
below did not afford any Diels-Alder adduct even under
the microwave-assisted heating conditions. The starting material
was recovered quantitatively (Scheme
[8 ]
).
Scheme 8
17
¹
H NMR and
¹³
C NMR Data for Compounds 11, 12a,b, and 14
Compound 11 : ¹ H NMR (400 MHz,
CDCl3 ): δ = 6.78
(q, J = 11.2,
6.4 Hz, 1 H), 6.70 (dd, J = 11.2,
16.0 Hz, 1 H), 6.51 (d, J = 2.4
Hz, 2 H), 6.35 (d, J = 15.6
Hz, 1 H), 6.32 (t, J = 2.4
Hz, 1 H), 6.18 (dd, J = 15.6,
10.4 Hz, 1 H), 6.02 (dd, J = 16.0,
1.6 Hz, 1 H), 5.78 (dt, J = 14.4,
7.2 Hz, 1 H), 3.77 (s, 6 H), 2.54 (t, J = 7.2
Hz, 2 H), 2.48-2.38 (m, 1 H), 2.16 (dt, J = 13.6,
6.4 Hz, 2 H), 1.74 (app q, J = 8.0
Hz, 2 H), 1.04 (d, J = 6.8
Hz, 6 H). ¹³ C NMR (100 MHz, CDCl3 ): δ = 200.8,
160.8 (2 C), 153.4, 139.5, 135.1, 131.1, 130.3, 129.7, 127.5, 104.1
(2 C), 99.6, 55.3 (2 C), 32.2, 31.1, 23.6, 21.3 (2 C). Compound 12a (exo ): ¹ H
NMR (400 MHz, CDCl3 ): δ = 6.44 (d, J = 2.0 Hz,
2 H), 6.35 (t, J = 2.4
Hz 1 H), 5.83 (ddd, J = 6.8,
4.8, 1.6 Hz, 1 H), 5.64 (dt, J = 9.6,
1.6 Hz, 1 H), 3.77 (s, 6 H), 3.45-3.38 (m, 1 H), 2.62 (app
t, J = 10.8
Hz, 1 H), 2.56-2.34 (m, 3 H), 2.25-2.02 (m, 4
H), 1.84-1.58 (m, 2 H), 0.69 (d, J = 7.2
Hz, 3 H), 0.43 (d, J = 7.2
Hz, 3 H). ¹³ C NMR (100 MHz, CDCl3 ): δ = 212.6,
160.3 (2 C), 144.6, 131.0, 129.5, 108.6 (2 C), 97.8, 55.3 (2 C),
51.8, 45.6, 43.9, 43.2, 42.1, 33.0, 28.2, 27.0, 19.5, 19.0. Compound 12b (endo ): ¹ H
NMR (400 MHz, CDCl3 ): δ = 6.34
(d, J = 2.0
Hz, 2 H), 6.30 (t, J = 1.6
Hz, 1 H), 5.70 (ddd, J = 10.0,
5.2, 2.8 Hz, 1 H), 5.47 (d, J = 9.6
Hz, 1 H), 3.77 (s, 6 H), 3.15 (dd, J = 10.0,
2.4 Hz 1 H), 2.62 (dd, J = 11.2,
4.8 Hz, 1 H), 2.52 (dt, J = 12.8,
6.0 Hz, 1 H), 2.45-2.41 (m, 1 H), 2.31-2.26 (m,
2 H), 2.05 (ddd, J = 12.4,
5.2, 3.2 Hz, 1 H), 1.89 (dd, J = 13.2,
3.6 Hz, 1 H), 1.80-1.60 (m, 3 H), 0.79 (d, J = 7.2 Hz,
3 H), 0.75 (d, J = 7.6
Hz, 3 H). ¹³ C NMR (100 MHz,
CDCl3 ): δ = 215.6,
160.7 (2 C), 147.8, 131.5, 128.6, 106.8 (2 C), 97.6, 55.2 (2 C),
52.9, 46.0, 43.1, 40.3, 40.0, 29.4, 29.0, 26.6, 19.9. Compound 14 : ¹ H NMR (400 MHz,
CDCl3 ): δ = 6.32
(d, J = 2.4
Hz, 2 H), 6.30 (t, J = 2.4
Hz, 1 H), 5.87 (ddd, J = 10.0,
4.8, 2.4 Hz, 1 H), 5.70 (dd, J = 10.4,
1.6 Hz, 1 H), 3.75 (s, 6 H), 3.38 (ddd, J = 11.2,
6.0, 2.4 Hz, 1 H), 2.70 (ddd, J = 13.2,
5.2, 3.2 Hz, 1 H), 2.48-2.40 (m, 1 H), 2.31-2.27
(m, 2 H), 2.04-1.96 (m, 1 H), 1.92-1.83 (m, 2
H), 1.76 (dd, J = 13.2,
11.2 Hz 1 H), 1.66-1.55 (m, 2 H). ¹³ C
NMR (100 MHz, CDCl3 ): δ = 214.4,
160.8 (2 C), 147.6, 130.9, 129.8, 105.3 (2 C), 98.0, 55.2 (2 C),
50.2, 43.1, 38.5, 37.2, 32.1, 28.3, 24.8.