References and Notes
1 Part 11: Chemistry of Aminophenols.
For part 10, see ref. 17d.
2a
Mohammadi M.
McMahon G.
Sun L.
Tang C.
Hirth P.
Yeh BK.
Hubbard SR.
Schlessinger J.
Science
1997,
276:
955
2b
Woodard CL.
Li Z.
Kathcart AK.
Terrell J.
Gerena L.
Lopez-Sanchez M.
Kyle DE.
Bhattacharjee AK.
Nichols DA.
Ellis W.
Prigge ST.
Geyer JA.
Waters NC.
J.
Med. Chem.
2003,
46:
3877
2c
Huwe A.
Mazitschek R.
Giannis A.
Angew.
Chem. Int. Ed.
2003,
42:
2122
For 3-substituted methyleneindolin-2-ones
prepared by condensation of 2-oxindoles with carbonyl compounds,
see:
3a
Sun L.
Tran N.
Tang F.
App H.
Hirth P.
McMahon G.
Tang C.
J. Med. Chem.
1998,
41:
2588
3b
Sun L.
Tran N.
Liang C.
Tang F.
Rice A.
Schreck R.
Waltz K.
Shawver LK.
McMahon G.
Tang C.
J.
Med. Chem.
1999,
42:
5120
3c
Sun L.
Tran N.
Liang C.
Hubbard S.
Tang F.
Lipson K.
Schreck R.
Zhou Y.
McMahon G.
Tang C.
J. Med. Chem.
2000,
43:
2655
3d
Sun L.
Liang C.
Shirazian S.
Zhou Y.
Miller T.
Cui J.
Fukuda JY.
Chu J.-Y.
Nematalla A.
Wang X.
Chen H.
Sistla A.
Luu TC.
Tang F.
Wei J.
Tang C.
J.
Med. Chem.
2003,
46:
1116
3e
Andreani A.
Burnelli S.
Granaiola M.
Leoni A.
Locatelli A.
Morigi R.
Rambaldi M.
Varoli L.
Kunkel MW.
J.
Med. Chem.
2006,
49:
6922
3f
Andreani A.
Burnelli S.
Granaiola M.
Leoni A.
Locatelli A.
Morigi R.
Rambaldi M.
Varoli L.
Calonghi N.
Cappadone C.
Farruggia G.
Zini M.
Stefanelli C.
Masotti L.
J. Med. Chem.
2007,
50:
3167
3g
Yang T.-M.
Liu G.
J. Comb. Chem.
2007,
9:
86
4 For 3-monosubstituted methyleneindolin-2-ones
prepared by HWE olefination, see: Teichert A.
Jantos K.
Harms K.
Studer A.
Org. Lett.
2004,
6:
3477
For a tandem Heck carbocyclization-Suzuki
cross-coupling approach to 3-disubstituted methyleneindolin-2-ones,
see:
5a
Cheung WS.
Patch RJ.
Player MR.
J. Org. Chem.
2005,
70:
3741
5b
Yanada R.
Obika S.
Inokuma T.
Yanada K.
Yamashita M.
Ohta S.
Takemoto Y.
J.
Org. Chem.
2005,
70:
6972
5c
Yanada R.
Obika S.
Oyama M.
Takemoto Y.
Org. Lett.
2004,
6:
2825
For a tandem Heck carbocyclization-Sonogashira
cross-coupling approach to 3-disubstituted methyleneindolin-2-ones
and the related domino sequence, see:
6a
D’Souza
DM.
Rominger F.
Müller TJJ.
Angew.
Chem. Int. Ed.
2005,
44:
153
6b
D’Souza DM.
Kiel A.
Herten D.-P.
Rominger F.
Müller TJJ.
Chem. Eur. J.
2008,
14:
529
For intermolecular amino-, carbo-,
and carboxy-palladation, C-H activation, and C-C
bond-formation sequences to 3-diarylmethyleneindolin-2-ones, see:
7a
Pinto A.
Neuville L.
Retailleau P.
Zhu J.
Org. Lett.
2006,
8:
4927
7b
Pinto A.
Neuville L.
Zhu J.
Angew.
Chem. Int. Ed.
2007,
46:
3291
7c
Tang S.
Peng P.
Pi S.-F.
Liang Y.
Wang N.-X.
Li J.-H.
Org.
Lett.
2008, 10, 1179
7d
Tang S.
Peng P.
Wang Z.-Q.
Tang B.-X.
Deng C.-L.
Li
J.-H.
Zhong P.
Wang N.-X.
Org. Lett.
2008,
10,
1875
8a
Sun L.-P.
Huang X.-H.
Dai W.-M.
Tetrahedron
2004,
60:
10983 ; and references cited therein
8b For microwave-assisted
solid-phase heteroannulation, see: Dai W.-M.
Guo D.-S.
Sun L.-P.
Huang X.-H.
Org. Lett.
2003,
5:
2919
8c
Sun L.-P.
Dai W.-M.
Angew. Chem. Int. Ed.
2006,
45:
7255
For a palladium-catalyzed carbonylative
annulation to 3-disubstituted methyleneindolin-2-ones, see:
9a
Tang S.
Yu Q.-F.
Peng P.
Li J.-H.
Zhong P.
Tang R.-Y.
Org. Lett.
2007,
9:
3413
9b For related annulations
of 2-alky-nylaryl isocyanates, see: Kamijo S.
Sasaki Y.
Kanazawa C.
Schüsseler T.
Yamamoto Y.
Angew.
Chem. Int. Ed.
2005,
44:
7718
9c
Miura T.
Takahashi Y.
Murakami M.
Org.
Lett.
2008,
10, 1743
9d For a palladium-catalyzed cyclization-anion-capture
approach to 3-substituted methyleneindolin-2-ones, see: Fielding MR.
Grigg R.
Urch CJ.
Chem. Commun.
2000,
2239
10a
Arumugam V.
Routledge A.
Abell C.
Balasubramanian S.
Tetrahedron
Lett.
1997,
38:
6473
10b
Inoue M.
Furuyama H.
Sakazaki H.
Hirama M.
Org. Lett.
2001,
3:
2863
10c
Lin S.
Danishefsky SJ.
Angew. Chem.
Int. Ed.
2001,
40:
1967
11a
Negishi E.
Copéret C.
Ma S.
Liou S.-Y.
Liu F.
Chem. Rev.
1996,
96:
365
11b
Beletskaya IP.
Cheprakov AV.
Chem.
Rev.
2000,
100:
3009 ;
and early reviews cited therein
11c
Dounay AB.
Overman LE.
Chem.
Rev.
2003,
103:
2945
For examples of U-4CR-intramolecular
Heck reaction sequences, see:
12a
Gracias V.
Moore JD.
Djuric SW.
Tetrahedron Lett.
2004,
45:
417
12b
Xiang Z.
Luo T.
Lu K.
Cui J.
Shi X.
Fathi R.
Chen J.
Yang Z.
Org.
Lett.
2004,
6:
3155
12c
Umkehrer M.
Kalinski C.
Kolb J.
Burdack C.
Tetrahedron Lett.
2006,
47:
2391
12d
Kalinski C.
Umkehrer M.
Schmidt J.
Ross G.
Kolb J.
Burdack C.
Hillerb W.
Hoffmann SD.
Tetrahedron Lett.
2006,
47:
4683
For U-4CR of 2-aminophenols, see:
13a
Xing X.
Wu J.
Feng G.
Dai W.-M.
Tetrahedron
2006,
62:
6774
13b
Xing X.
Wu J.
Luo J.
Dai W.-M.
Synlett
2006,
2099
For use of 2-carboamidoaryl triflates
in indole synthesis, see:
14a
Dai W.-M.
Guo D.-S.
Sun L.-P.
Tetrahedron Lett.
2001,
42:
5275
14b
Dai W.-M.
Sun L.-P.
Guo D.-S.
Tetrahedron
Lett.
2002,
43:
7699 ;
and references cited in refs. 8a,b
15
Dai W.-M.
Shi J.
Comb. Chem. High Throughput Screening
2007,
10:
837
16 For a recent review on post-Ugi
transformations, see: Akritopoulou I.
Djuric SW.
Heterocycles
2007,
73:
125
For microwave-assisted synthesis
of 3,4-dihydro-3-oxo-2H-1,4-benzoxazines
from 2-aminophenols, see:
17a
Dai
W.-M.
Wang X.
Ma C.
Tetrahedron
2005,
61:
6879
17b
Feng G.
Wu J.
Dai W.-M.
Tetrahedron
2006,
62:
4635
17c
Feng G.
Wu J.
Dai W.-M.
Tetrahedron
Lett.
2007,
48:
401
17d
Wu J.
Nie L.
Luo J.
Dai W.-M.
Synlett
2007,
2728
17e For microwave-assisted
3CR-aza-DA of 2-aminophenols, see: Xing X.
Wu J.
Dai W.-M.
Tetrahedron
2006,
62:
11200
18
General Procedure
for Synthesis of U-4CR Products 13
A solution of a
2-aminophenol 9 (3.0 mmol) and an aldehyde 10 (3.0 mmol) in MeOH (5 mL) was stirred
at r.t. for 15 min. To the resultant mixture was added a carboxylic
acid 11 (3.0 mmol) followed by stirring
for 5 min. An isocyanide 12 (3.0 mmol)
was then added to the above mixture followed by stirring at 50 ˚C
for 48 h. The white precipitate of the U-4CR product 13 was
collected by filtration and the solid was washed with MeOH (3 mL).
The combined filtrate was concentrated under reduced pressure, and
the residue was purified by flash column chromatography over silica
gel [eluting with 20% EtOAc in PE (bp 60-90 ˚C)] to
give additional portion of the U-4CR product 13.
The yields of
U-4CR 13a-g are given in Table
[¹]
.
Characterization
Data for 13d
White solid; mp 233-236 ˚C
(CHCl3-hexane); R
f
= 0.26 (20% EtOAc-hexane).
IR (KBr): 3326, 3030, 1654, 1649, 1363 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ [major atropisomer
(76% in CDCl3 at r.t.)] = 10.71
(s, 1 H), 7.61 (d, J = 15.6
Hz, 1 H), 7.32-7.13 (m, 15 H), 6.86 (d, J = 2.0
Hz, 1 H), 6.82 (s, 1 H), 6.71 (t, J = 5.6
Hz, 1 H), 6.29 (s, 1 H), 6.23 (d, J = 15.6
Hz, 1 H), 6.12 (d, J = 1.2
Hz, 1 H), 4.60 and 4.49 (ABqd, J = 15.2,
6.0 Hz, 2 H), 1.95 (s, 3 H). ¹³C NMR (100
MHz, CDCl3): δ [major atropisomer (76% in
CDCl3 at r.t.)] = 173.1, 167.6, 153.6,
143.4, 137.2, 134.9, 133.1, 132.0, 130.8, 130.1 (2×), 129.6,
129.4, 129.3, 128.6 (2×), 128.5 (2×), 128.4 (2×),
128.0 (2×), 127.6 (2×), 127.5, 124.4, 117.7, 117.3,
65.5, 44.1, 19.9. MS (ESI-): m/z (%) = 475 (100) [M - H].
Anal. Calcd for C31H28N2O3:
C, 78.13; H, 5.92; N, 5.88. Found: C, 78.13; H, 5.91; N, 5.84.
19
General Procedure
for Formation of Aryl Triflates 14
To a suspension
of NaH (1.5 mmol) in dry THF (3 mL) cooled in an ice-water
bath was added a solution of the
U-4CR product 13 (1.0 mmol) in dry THF (7 mL) under a nitrogen
atmosphere. After stirring for 10 min, a solution of PhNTf2 (1.2
mmol) in dry THF (8 mL) was added via a syringe. The resultant mixture
was stirred at r.t. for 1 h. The reaction mixture was concentrated
under reduced pressure, and the residue was purified by flash column
chromatog-raphy over silica gel [eluting with 20% EtOAc
in PE (bp 60-90 ˚C)] to give the aryl
triflate 14. The yields of aryl triflates 14a-g are
given in Table
[¹]
.
Characterization Data for 14d
Colorless
crystals; mp 146-148 ˚C (EtOAc-hexane); R
f
= 0.29
(20% EtOAc-hexane). IR (KBr): 3322, 1681, 1652,
1601, 1366, 1212, 1139 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ [major atropisomer
(83% in CDCl3 at r.t.)] = 7.96-7.90
(br s, 1 H), 7.67 (d, J = 15.6
Hz, 1 H), 7.35-7.10 (m, 16 H), 6.88 (d, J = 8.4
Hz, 1 H), 6.78-6.64 (br s, 1 H), 6.30-6.23 (br
s, 1 H), 6.24 (d, J = 15.6
Hz, 1 H), 4.62-4.41 (m, 2 H), 2.39 (s, 3 H). ¹³C
NMR (100 MHz, CDCl3): δ [ major atropisomer
(83% in CDCl3 at r.t.)] = 170.1,
166.8, 144.1, 143.5, 139.2, 138.1, 135.3, 135.0, 132.4, 131.3, 131.0,
130.9 (2×), 129.6, 128.7, 128.5 (2×), 128.4 (2×), 128.0
(2×), 127.9 (2×), 127.3 (2×), 127.1,
120.6, 118.2, 118.1 (q, J
C-F = 317.9
Hz), 65.2, 43.6, 20.8. MS (ESI+): m/z (%) = 631
(100) [M + Na+].
Anal. Calcd for C32H27F3N2O5S: C,
63.15; H, 4.47; N, 4.60. Found: C, 63.17; H, 4.43; N, 4.51.
20
Larhed M.
Moberg C.
Hallberg A.
Acc.
Chem. Res.
2002,
35:
717
21
General Procedure
for Microwave-Accelerated Synthesis of IMHR Products 15
A
10 mL pressurized process vial was charged with the aryl triflate 14 (0.26 mmol), Pd(OAc)2 (1.3˙10-² mmol,
5 mol%), and (±)-BINAP (1.3˙10-² mmol,
5 mol%). The vial was sealed with a cap containing a silicon
septum. The vial was evacuated and backfilled with N2 (repeated
for three times) through the cap using a needle. To the degassed
vial was added degassed anhyd MeCN (5 mL) and Et3N (1.04
mmol) through the cap using a syringe. The loaded vial was then placed
into the microwave reactor cavity and was heated at 180 ˚C
for 20-60 min. After cooling to r.t. the reaction mixture
was concentrated under reduced pressure and the residue was purified
by flash column chromatography over silica gel [eluting
with 17% EtOAc in PE (bp 60-90 ˚C)] to give
the 3-arylideneindolin-2-ones (E)-15 and (Z)-15. The yields of 15a-g and E/Z isomer ratios are given in Table
[³]
.
Characterization
Data for (
E
)-15d
Orange
crystals; mp 180-182 ˚C (acetone-hexane); R
f
= 0.34
(20% EtOAc-hexane). IR (KBr): 3326, 1685, 1619,
1445, 1153 cm-¹. ¹H
NMR (400 MHz, DMSO-d
6): δ = 8.97
(t, J = 5.6
Hz, 1 H), 7.76 (s, 1 H), 7.72 (d, J = 7.2 Hz,
2 H), 7.55-7.45 (m, 4 H), 7.40-7.22 (m, 10 H),
6.68 (s, 1 H), 6.67 (d, J = 6.8
Hz, 1 H), 6.38 (s, 1 H), 4.45 and 4.38 (ABqd, J = 14.8,
5.6 Hz, 2 H), 2.11 (s, 3 H). ¹³C NMR
(100 MHz, DMSO-d
6): δ = 167.8,
167.2, 142.7, 139.4, 139.1, 135.6, 135.3, 134.5, 129.7, 129.3 (2×),
128.8 (2×), 128.4 (2×), 128.3 (2×), 128.2
(2×), 127.8, 127.4 (2×), 126.8, 126.2, 122.2,
121.7, 118.1, 112.5, 57.5, 42.7, 21.6. MS (ESI+): m/z (%) = 481
(100) [M + Na+].
Anal. Calcd for C31H26N2O2:
C, 81.20; H, 5.72; N, 6.11. Found: C, 81.35; H, 5.52; N, 5.94.
Characterization Data for (
Z
)-15d
Orange
needles; mp 180-182 ˚C (acetone-hexane); R
f
= 0.39
(20% EtOAc-hexane). IR (KBr): 3314, 1669, 1612,
1452, 1170 cm-¹. ¹H
NMR (400 MHz, DMSO-d
6): δ = 8.91
(t, J = 6.0
Hz, 1 H), 8.37 (d, J = 8.0
Hz, 1 H), 8.36 (d, J = 7.2
Hz, 1 H), 7.85 (s, 1 H), 7.66 (d, J = 7.6
Hz, 1 H), 7.50-7.45 (m, 3 H), 7.40-7.20 (m, 10
H), 6.83 (d, J = 7.6
Hz, 1 H), 6.58 (s, 1 H), 6.30 (s, 1 H), 4.43 and 4.32 (ABqd, J = 14.8,
6.0 Hz, 2 H), 2.16 (s, 3 H). ¹³C NMR
(100 MHz, DMSO-d
6): δ = 167.3,
165.7, 140.6, 139.1, 138.1, 136.3, 135.4, 133.9, 131.8 (2×),
130.3, 128.3 (2×), 128.3 (2×), 128.1 (2×),
128.1 (2×), 127.7, 127.4 (2×), 126.7, 125.2, 122.2,
121.6, 119.3, 111.8, 57.2, 42.6, 21.6. MS (ESI-): m/z (%) = 457
(100) [M - H]. Anal. Calcd for C31H26N2O2:
C, 81.20; H, 5.72; N, 6.11. Found: C, 81.31; H, 5.65; N, 6.10. The ¹H
NMR and ¹³C NMR spectra of 15a-g can
be found in the Supporting Information.