References and Notes
1
Modern
Carbonyl Chemistry
Otera J.
Wiley-VCH;
Weinheim:
2000.
2
Nakagawa K.
Onoue H.
Sugita J.
Chem.
Pharm. Bull.
1964,
12:
1135
3
Orito K.
Hatakeyama T.
Takeo M.
Uchiito S.
Tokuda M.
Suginome H.
Tetrahedron
1998,
54:
8403
4
Stephens FF.
Bower JD.
J. Chem. Soc.
1949,
2971
5a
Rawalay SS.
Shechter H.
J.
Org. Chem.
1967,
32:
3129
5b
Noureldin NA.
Bellegarde JW.
Synthesis
1999,
939
6
Audette RJ.
Quail JW.
Smith PJ.
Tetrahedron
Lett.
1971,
279
7
Chen HG.
Knochel P.
Tetrahedron Lett.
1988,
29:
6701
8
Miyazawa A.
Tanaka K.
Sakakura T.
Tashiro M.
Tashiro H.
Prakash GKS.
Olah GA.
Chem. Commun.
2005,
2104
9
Hamamoto H.
Suzuki Y.
Takahashi H.
Ikegami S.
Tetrahedron Lett.
2007,
48:
4239
10
Choi H.
Doyle MP.
Chem. Commun.
2007,
745
11
Murahashi S.-I.
Komiya N. In Modern
Oxidation Methods
Backvall J.-E.
Wiley-VCH;
Weinheim:
2004.
p.175-179
12
Larsen J.
Jørgensen KA.
J. Chem.
Soc., Perkin Trans. 2
1992,
1213
13
Moriarty RM.
Vaid RK.
Duncan MP.
Tetrahedron Lett.
1988,
29:
6913
14
Nicolaou KC.
Mathison CJN.
Montagnon T.
J. Am. Chem. Soc.
2004,
126:
5192
15
Hoffman RV.
J.
Am. Chem. Soc.
1976,
98:
6702
16
Corey EJ.
Achiwa K.
J. Am. Chem. Soc.
1969,
91:
1429
For the α-oxyacylation
of carbonyl compounds, see:
17a
Beshara CS.
Hall A.
Jenkins RL.
Jones KL.
Jones TC.
Killeen NM.
Taylor PH.
Thomas SP.
Tomkinson NCO.
Org.
Lett.
2005,
7:
5729
17b
Beshara CS.
Hall A.
Jenkins RL.
Jones TC.
Parry RT.
Thomas SP.
Tomkinson NCO.
Chem.
Commun.
2005,
1478
17c
Jones TC.
Tomkinson NCO.
Org.
Synth.
2007,
233
18 For the formation of carbamates,
see: Hall A.
Huguet EP.
Jones KL.
Jones TC.
Killeen NM.
Yau SC.
Tomkinson NCO.
Synlett
2007,
293
19 For the formation of carbonates,
see: Hall A.
Jones KL.
Jones TC.
Killeen NM.
Porzig R.
Taylor PH.
Yau SC.
Tomkinson NCO.
Synlett
2006,
3435
20 For the α-oxysulfonylation
of carbonyl compounds, see: John ORS.
Killeen NM.
Knowles DA.
Yau SC.
Tomkinson NCO.
Org. Lett.
2007,
9:
4009
21 For the N-arylation of hydroxylamines,
see: Jones KL.
Porzelle A.
Hall A.
Woodrow MD.
Tomkinson NCO.
Org.
Lett.
2008,
10:
797
22
Wang QX.
King J.
Phanstiel OIV.
J. Org. Chem.
1997,
62:
8104
23 All the known ketones prepared in
this study were characterised by ¹H NMR, ¹³C
NMR, IR and LRMS.
24
Roy RB.
Swan GA.
J. Chem. Soc. C
1968,
80
25
Alewood PF.
Calder IC.
Richardson RL.
Synthesis
1981,
121
26
Berman AM.
Johnson JS.
J. Am. Chem. Soc.
2004,
126:
5680
27
Typical Procedure
for Conversion of
N
-Alkyl-
O
-benzoyl Hydroxylamines to Ketones: N-α-Methyl benzyl-O-benzoyl hydroxylamine (100 mg, 0.41
mmol) was dissolved in DMF (0.59 mL) at ambient temperature. Caesium carbonate
(135 mg, 0.41 mmol) was added and the resulting reaction mixture
was heated at 50 ˚C overnight. The resulting reaction mixture
was allowed to cool and purified directly by column chromatography,
eluting with 20% EtOAc-PE, to give acetophenone
(42 mg, 84%) as a clear colourless oil. IR (thin film):
1683, 1599, 1582, 1449, 1359, 1266, 1180, 1078, 1025, 955, 760,
690 cm-¹. ¹H NMR
(400 MHz, CDCl3): δ = 7.85 (d, J = 7.2 Hz, 2 H), 7.45 (t, J = 7.3 Hz, 1 H), 7.40-7.30
(m, 2 H), 2.50 (s, 3 H). ¹³C NMR (100 MHz,
CDCl3): δ = 198.1, 137.1, 133.1, 128.6,
128.3, 26.6. MS (EI): m/z = 120.06 [M]+.
Typical Procedure for the One-Pot Conversion
of Primary Amines to Ketones: Benzoyl peroxide (326 mg, 1.01
mmol, 75%) was dissolved in DMF (2.53 mL) and cooled to
0 ˚C. Caesium carbonate (493 mg, 1.51 mmol) was added with
stirring followed by cyclohexyl ethylamine (0.18 mL, 1.21 mmol).
The resulting reaction mixture was stirred at 0 ˚C for
2 h before warming to r.t. TLC was used to confirm complete consumption
of benzoyl peroxide before heating at 50 ˚C overnight.
The resulting reaction mixture was purified directly by column chromatography,
eluting with 20% EtOAc-PE, to give cyclohexyl
methyl ketone
(75 mg, 59%) as a clear colourless
oil. IR (thin film): 2931, 2854, 1706 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 2.3-2.1 (m,
1 H), 2.05 (s, 3 H), 1.80-1.85 (m, 2 H), 1.70-1.75
(m,
2 H), 1.55-1.65 (m, 1 H), 1.05-1.30
(m, 5 H). ¹³C NMR (100 MHz, CDCl3): δ = 212.2,
51.4, 28.4, 27.8, 25.8, 25.6. MS (EI): m/z = 126.22 [M]+.