Subscribe to RSS
DOI: 10.1055/s-0028-1085424
© Georg Thieme Verlag KG Stuttgart · New York
Accuracy and Clinical Use of a Novel Aiming Device for Frameless Stereotactic Brain Biopsy
Publication History
Publication Date:
05 December 2008 (online)
Abstract
Aiming devices enable the use of neuronavigation systems for rigid instrument guidance mimicking the possibilities of a frame-based system without having a stereotactic frame affixed to the skull. The aim of the presented work was to investigate the phantom targeting accuracy of the Vertek aiming device (Medtronic Inc., Louisville, USA) and whether it can be safely and accurately applied in a concept of minimally invasive brain biopsy in which multi-modal image fusion, image-to-patient registration and head immobilization were based on a non-invasive vacuum mouthpiece. A plastic model of a head with 20 target beads broadly distributed around the head volume was used for determination of CT-based targeting accuracy. Every target was punctured 5 times totaling 100 needle positionings. Accuracy was evaluated on postoperative CT scans with the needles in place. The mean normal deviation (n=100) was 1.5±0.8 mm and the mean angle of deviation was 1.1±0.7 °. In a preliminary clinical series in ten patients diagnostic biopsy sampling of intracranial lesions with a median diameter of 28 mm (range: 12–90 mm) could be achieved in all patients and no biopsy related complications were recorded. The experimental results showed a similar accuracy to frame-based stereotaxy. The device facilitates trajectory alignment via two pivot joints and the actual depth and location of the biopsy needle can be monitored. Within the limitations of a preliminary study, brain biopsy may be accurately and safely performed for lesions ≥12 mm.
Key words
accuracy - aiming device - brain biopsy - frameless stereotaxy
References
- 1 Friedman WA, Sceats Jr DJ, Nestok BR. et al . The incidence of unexpected pathological findings in an image-guided biopsy series: a review of 100 consecutive cases. Neurosurgery. 1989; 25 180-184
- 2 Kim JE, Kim DG, Paek SH. et al . Stereotactic biopsy for intracranial lesions: reliability and its impact on the planning of treatment. Acta Neurochir (Wien). 2003; 145 547-554
- 3 Horsley V, Clarke RH. The structure and functions of the cerebellum examined by a new method. Brain. 1908; 31 45-124
- 4 Aker FV, Hakan T, Karadereler S. et al . Accuracy and diagnostic yield of stereotactic biopsy in the diagnosis of brain masses: comparison of results of biopsy and resected surgical specimens. Neuropathology. 2005; 25 207-213
- 5 Dorward NL, Paleologos TS, Alberti O. et al . The advantages of frameless stereotactic biopsy over frame-based biopsy. Br J Neurosurg. 2002; 16 110-118
- 6 Eisner W, Burtscher J, Bale R. et al . The use of neuronavigation and electrophysiology during surgery of subcortically located lesions in the sensorymotor strip. J Neurol Neurosurg Psych. 2002; 72 378-381
- 7 Eisner W, Steude U, Burtscher J. et al . Surgery of lesions in the motor strip combining a stereotactically guided mini-craniotomy with electrophysiological mapping of the motorcortex. Minim Invas Neurochir. 2001; 44 230-234
- 8 Sawin PD, Hitchon PW, Follett KA. et al . Computed imaging-assisted stereotactic brain biopsy: a risk analysis of 225 consecutive cases. Surg Neurol. 1998; 49 640-649
- 9 Maciunas RJ, Galloway Jr RL, Latimer JW. The application accuracy of stereotactic frames. Neurosurgery. 1994; 35 682-694
- 10 Grunert P, Darabi K, Espinosa J. et al . Computer-aided navigation in neurosurgery. Neurosurg Rev. 2003; 26 73-99
- 11 Grunert P, Muller-Forell W, Darabi K. et al . Basic principles and clinical applications of neuronavigation and intraoperative computed tomography. Comput Aided Surg. 1998; 3 166-173
- 12 Paleologos TS, Dorward NL, Wadley JP. et al . Clinical validation of true frameless stereotactic biopsy: analysis of the first 125 consecutive cases. Neurosurgery. 2001; 49 830-835
- 13 Vannier MW, Haller JW. Navigation in diagnosis and therapy. Eur J Radiol. 1999; 31 132-140
- 14 Woodworth GF, MacGirt MJ, Samdani A. et al . Frameless image-guided stereotactic brain biopsy procedure: diagnostic yield, surgical morbidity, and comparison with the frame-based technique. J Neurosurg. 2006; 104 233-237
- 15 Alp MS, Dujovny M, Misra M. et al . Head registration techniques for image-guided surgery. Neurol Res. 1998; 20 31-37
- 16 Germano IM, Villalobos H, Silvers A. et al . Clinical use of the optical digitizer for intracranial neuronavigation. Neurosurgery. 1999; 45 261-269
- 17 Gumprecht HK, Widenka DC, Lumenta CB. BrainLab VectorVision Neuronavigation System: technology and clinical experiences in 131 cases. Neurosurgery. 1999; 44 97-104
- 18 Barnett GH, Kormos DW, Steiner CP. et al . Use of a frameless, arm-less stereotactic wand for brain tumor localization with two-dimensional and three-dimensional neuroimaging. Neurosurgery. 1993; 33 674-678
- 19 Golfinos JG, Fitzpatrick BC, Smith LR. et al . Clinical use of a frame-less stereotactic arm: results of 325 cases. J Neurosurg. 1995; 83 197-205
- 20 Sipos EP, Tebo SA, Zinreich SJ. et al . In vivo accuracy testing and clinical experience with the ISG Viewing Wand. Neurosurgery. 1996; 39 194-202
- 21 Mascott CR. Comparison of magnetic tracking and optical tracking by simultaneous use of two independent frameless stereotactic systems. Neurosurgery. 2005; 57 ((4 Suppl)) 295-301
- 22 Dorward NL, Alberti O, Dijkstra A. et al . Clinical introduction of an adjustable rigid instrument holder for frameless stereotactic interventions. Comput Aided Surg. 1997; 2 180-185
- 23 Germano IM, Queenan JV. Clinical experience with intracranial brain needle biopsy using frameless surgical navigation. Comput Aided Surg. 1998; 3 33-39
- 24 Holloway KL, Gaede SE, Starr PA. et al . Frameless stereotaxy using bone fiducial markers for deep brain stimulation. J Neurosurg. 2005; 103 404-413
- 25 Patel N, Sandeman D. A simple trajectory guidance device that assists freehand and interactive image guided biopsy of small deep intracranial targets. Comput Aided Surg. 1997; 2 186-192
- 26 Barnett GH, Miller DW, Weisenberger J. Frameless stereotaxy with scalp-applied fiducial markers for brain biopsy procedures: experience in 218 cases. J Neurosurg. 1999; 91 569-576
- 27 Gralla J, Nimsky C, Buchfelder M. et al . Frameless stereotactic brain biopsy procedures using the Stealth Station: indications, accuracy and results. Zentralbl Neurochir. 2003; 64 166-170
- 28 Bale RJ, Burtscher J, Eisner W. et al . Computer-assisted neurosurgery by using a noninvasive vacuum-affixed dental cast that acts as a reference base: another step toward a unified approach in the treatment of brain tumors. J Neurosurg. 2000; 93 208-213
- 29 Bale RJ, Freysinger W, Gunkel AR. et al . Head and neck tumors: fractionated frameless stereotactic interstitial brachytherapy – initial experience. Radiology. 2000; 214 591-595
- 30 Bale RJ, Laimer I, Schlager A. et al . Frameless stereotactic cannulation of the foramen ovale for ablative treatment of trigeminal neuralgia. Neurosurgery. 2006; 59 ((4 Suppl 2)) ONS394-ONS402
- 31 Bale RJ, Vogele M, Freisinger W. et al . Minimally invasive head holder to improve the performance of frameless stereotactic surgery. The Laryngoscope. 1997; 107 373-377
- 32 Bale RJ, Vogele M, Martin A. et al . VBH head holder to improve frameless stereotactic brachytherapy of cranial tumors. Comput Aided Surg. 1997; 2 286-291
- 33 Burtscher J, Sweeney R, Bale RJ. et al . Neuroendoscopy based on computer assisted adjustment of the endoscope holder in the laboratory. Minim Invas Neurosurg. 2003; 46 208-214
- 34 Martin A, Bale RJ, Vogele M. et al . Vogele-Bale-Hohner Mouthpiece: registration device for frameless stereotactic surgery. Radiology. 1998; 208 261-265
- 35 Sweeney RA, Bale R, Auberger T. et al . A simple and non-invasive vacuum mouthpiece-based head fixation system for high precision radiotherapy. Strahlenther Onkol. 2001; 177 43-47
- 36 Sweeney RA, Bale RJ, Moncayo R. et al . Multimodality cranial image fusion using external markers appied via a vacuum mouthpiece and a case report. Strahlenther Onkol. 2003; 179 254-260
- 37 Nimsky C, Fujita A, Ganslandt O. et al . Frameless stereotactic surgery using intraoperative high-field magnetic resonance imaging. Neurol Med Chir (Tokyo). 2004; 44 522-533
- 38 Bernays RL, Kollias SS, Khan N. et al . A new artifact-free device for frameless, magnetic resonance imaging-guided stereotactic procedures. Neurosurgery. 2000; 46 112-126
- 39 Hall WA, Liu H, Martin AJ. et al . Brain biopsy sampling by using prospective stereotaxis and a trajectory guide. J Neurosurg. 2001; 94 67-71
- 40 Hall WA, Liu H, Truwit CL. Navigus trajectory guide. Neurosurgery. 2000; 46 502-504
- 41 Moriarty TM, Quinones-Hinojosa A, Larson PS. et al . Frameless stereotactic neurosurgery using intraoperative magnetic resonance imaging: stereotactic brain biopsy. Neurosurgery. 2000; 47 1138-1145
- 42 Hall WA, Galicich W, Bergman T. et al . 3-Tesla intraoperative MR imaging for neurosurgery. J Neurooncol. 2006; 77 297-303
- 43 Truwit CL, Hall WA. Intraoperative magnetic resonance imaging-guided neurosurgery at 3-T. Neurosurgery. 2006; 58 ((4 Suppl 2)) ONS338-ONS345
- 44 Benardete EA, Leonard MA, Weiner HL. Comparison of frameless stereotactic systems: accuracy, precision, and applications. Neurosurgery. 2001; 49 1409-1415
- 45 Widmann G, Widmann R, Widmann E. et al . In vitro accuracy of a novel registration and targeting technique for image guided template production. Clinical Oral Implants Research. 2005; 16 502-508
- 46 Widmann G, Widmann R, Widmann E. et al . Use of surgical navigation systems for CT-guided template production. Int J Oral Maxillofac Implants. 2006; 22 72-78
- 47 Dorward NL, Alberti O, Palmer JD. et al . Accuracy of true frameless stereotaxy: in vivo measurement and laboratory phantom studies. Technical note. J Neurosurg. 1999; 90 160-168
- 48 Fitzpatrick JM, West JB. The distribution of target registration error in rigid-body point-based registration. IEEE Trans Med Imaging. 2001; 20 917-927
- 49 Helm PA, Eckel TS. Accuracy of registration methods in frameless stereotaxis. Comput Aided Surg. 1998; 3 51-56
-
50 Maciunas RJ, Fitzpatrick JM, Galloway RL. et al .Beyond stereotaxy: extreme levels of application accuracy are provided by implantable fiducial markers for interactive image-guided neurosurgery. In: Maciunas RJ, ed.
Interactive Image-Guided Neurosurgery. Neurosurgical Topics . Park Ridge, III. The American Association of Neurological Surgeons 1993: 259-270 - 51 Mascott CR, Sol JC, Bousquet P. et al . Quantification of true in vivo (application) accuracy in cranial image-guided surgery: influence of mode of patient registration. Neurosurgery. 2006; 59 ((1 Suppl 1)) ONS146-ONS156
- 52 Mascott CR. In vivo accuracy of image guidance performed using optical tracking and optimized registration. J Neurosurg. 2006; 105 561-567
- 53 Maurer CR, Fitzpatrick JM, Wang MY. et al . Registration of head volume images using implantable fiducial markers. IEEE Trans Med Imaging. 1997; 16 447-462
- 54 West JB, Fitzpatrick JM, Toms SA. et al . Fiducial point placement and the accuracy of point-based, rigid body registration. Neurosurgery. 2001; 48 810-816
- 55 Wolfsberger S, Rossler K, Regatschnig R. et al . Anatomical landmarks for image registration in frameless stereotactic neuronavigation. Neurosurg Rev. 2002; 25 68-72
- 56 Winkler D, Trantakis C, Lindner D. et al . Improving planning procedure in brain biopsy: coupling frame-based stereotaxy with navigational device STP 40. Minim Invas Neurosurg. 2003; 46 37-40
Correspondence
G. WidmannMD
Interdisciplinary Stereotactic Intervention and Planning Laboratory (SIP-Lab)
Innsbruck Medical University
Anichstraße 35
6020 Innsbruck
Austria
Phone: +43/512/504 809 27
Fax: +43/512/504 27 58
Email: gerlig.widmann@i-med.ac.at