Subscribe to RSS
DOI: 10.1055/s-0028-1087300
Organocatalytic Asymmetric 1,3-Dipolar Cycloaddition of Nitrones to Nitroolefins
Publication History
Publication Date:
23 October 2008 (online)
Abstract
The asymmetric 1,3-dipolar cycloaddition of nitrones to nitroolefins was investigated by employing novel thiourea-containing organocatalysts. This transformation exhibited excellent diastereoselectivities (generally >99:1 dr) and moderate to high enantioselectivities (up to 88% ee). A 2,3-diaminopropanol derivative with three contiguous chiral centers was efficiently prepared from one cycloaddition adduct.
Key words
dipolar cycloaddition - nitrones - nitroolefins - thiourea - orgaoncatalysis
- Supporting Information for this article is available online:
- Supporting Information
-
1a For
a comprehensive review of 1,3-dipolar cycloadditions, see:
Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles
and Natural Products
Padwa A.Pearson WH. John Wiley and Sons; Hoboken NJ: 2003. - For recent reviews of asymmetric 1,3-dipolar cycloadditions, see:
-
1b
Pellissier H. Tetrahedron 2007, 63: 3235 -
1c
Gothelf KV.Jørgensen KA. Chem. Rev. 1998, 98: 863 - For reviews, see:
-
2a
Coldham I.Hufton R. Chem. Rev. 2005, 105: 2765 -
2b
Nájera C.Sansano JM. Angew. Chem. Int. Ed. 2005, 44: 6272 -
2c
Pandey G.Banerjee P.Gadre SR. Chem. Rev. 2006, 106: 4484 - For selected examples, see:
-
3a
Shintani R.Fu GC. J. Am. Chem. Soc. 2003, 125: 10778 -
3b
Suárez A.Downey CW.Fu GC. J. Am. Chem. Soc. 2005, 127: 11244 -
3c
Suga H.Funyu A.Kakehi A. Org. Lett. 2007, 9: 97 -
3d
Chen W.Yuan X.-H.Li R.Du W.Wu Y.Ding L.-S.Chen Y.-C. Adv. Synth. Catal. 2006, 348: 1818 -
3e
Chen W.Du W.Duan Y.-Z.Wu Y.Yang S.-Y.Chen Y.-C. Angew. Chem. Int. Ed. 2007, 46: 7667 -
3f
Sibi MP.Rane D.Stanley LM.Soeta T. Org. Lett. 2008, 10: 2971 - For selected examples, see:
-
4a
Luft JAR.Meleson K.Houk KN. Org. Lett. 2007, 9: 555 -
4b
Shing TKM.Wong WF.Cheng HM.Kwok WS.So KH. Org. Lett. 2007, 9: 753 -
4c
Sibi MP.Ma Z.Itoh K.Prabagaran N.Jasperse CP. Org. Lett. 2005, 7: 2349 -
4d
Sibi MP.Itoh K.Jasperse CP. J. Am. Chem. Soc. 2004, 126: 5366 - For selected examples, see:
-
5a
Sibi MP.Stanley LM.Jasperse CP. J. Am. Chem. Soc. 2005, 127: 8276 -
5b
Sibi MP.Stanley LM.Soeta T. Org. Lett. 2007, 9: 1553 -
5c
Kanemasa S.Kanai T. J. Am. Chem. Soc. 2000, 122: 10710 -
5d
Kano T.Hashimoto T.Maruoka K. J. Am. Chem. Soc. 2006, 128: 2174 - For reviews, see:
-
6a
Frederikson M. Tetrahedron 1997, 53: 403 -
6b
Gothelf KV.Jørgensen KA. Chem. Commun. 2000, 1449 -
7a
Jiao P.Nakashima D.Yamamoto H. Angew. Chem. Int. Ed. 2008, 47: 2411 -
7b
Simonsen KB.Bayon P.Hazell RG.Gothelf KV.Jørgensen KA. J. Am. Chem. Soc. 1999, 121: 3845 - For selected examples, see:
-
8a
Viton F.Bernardinelli G.Kundig EP. J. Am. Chem. Soc. 2002, 124: 4968 -
8b
Sibi MP.Ma Z.Jasperse CP. J. Am. Chem. Soc. 2004, 126: 718 -
8c
Palomo C.Oiarbide M.Arceo E.García JM.López R.González A.Linden A. Angew. Chem. Int. Ed. 2005, 44: 6187 -
8d
Kano T.Hashimoto T.Maruoka K. J. Am. Chem. Soc. 2005, 127: 11926 -
8e
Huang Z.-Z.Kang Y.-B.Zhou J.Ye M.-C.Tang Y. Org. Lett. 2004, 6: 1677 -
8f
Suga H.Nakajima T.Itoh K.Kakehi A. Org. Lett. 2005, 7: 1431 -
8g
Evans DA.Song H.-J.Fandrick KR. Org. Lett. 2006, 8: 3351 -
8h
Lim K.-C.Hong Y.-T.Kim S. Adv. Synth. Catal. 2008, 350: 380 -
8i
Wang Y.Wolf J.Zavalij P.Doyle MP. Angew. Chem. Int. Ed. 2008, 47: 1439 - For limited examples by organocatalysis, see:
-
8j
Jen WS.Wiener JJM.MacMillan DWC. J. Am. Chem. Soc. 2000, 122: 9874 -
8k
Karlsson S.Högberg H.-E. Eur. J. Org. Chem. 2003, 2782 -
9a
Yakura T.Nakazawa M.Takino T.Ikeda M. Chem. Pharm. Bull. 1992, 40: 2014 -
9b
Karthikeyan K.Perumal PT.Etti S.Shanmugam G. Tetrahedron 2007, 63: 10581 - For reviews, see:
-
10a
Berner OM.Tedeschi L.Enders D. Eur. J. Org. Chem. 2002, 1877 -
10b
Tsogoeva SB. Eur. J. Org. Chem. 2002, 1701 - For reviews on thiourea catalysis, see:
-
11a
Takemoto Y. Org. Biomol. Chem. 2005, 3: 4299 -
11b
Connon SJ. Chem. Eur. J. 2006, 12: 5418 -
11c
Doyle AG.Jacobsen EN. Chem. Rev. 2007, 107: 5713 -
11d
Yu X.Wang W. Chem. Asian J. 2008, 3: 516 -
11e
Connon SJ. Chem. Commun. 2008, 2499 -
12a
Okino T.Hoashi Y.Takemoto Y. J. Am. Chem. Soc. 2003, 125: 12672 -
12b
Okino T.Hoashi Y.Furukawa T.Xu X.Takemoto Y. J. Am. Chem. Soc. 2005, 127: 119 -
12c
McCooey SH.Connon SJ. Angew. Chem. Int. Ed. 2005, 44: 6367 -
12d
Ye J.Dixon DJ.Hynes PS. Chem. Commun. 2005, 4481 -
12e
Herrera RP.Sgarzani V.Bernardi L.Ricci A. Angew. Chem. Int. Ed. 2005, 44: 6576 -
12f
Wang J.Li H.Duan W.Zu L.Wang W. Org. Lett. 2005, 7: 4713 -
12g
Liu T.-Y.Cui H.-L.Chai Q.Long J.Li B.-J.Wu Y.Ding L.-S.Chen Y.-C. Chem. Commun. 2007, 2228 -
12h
Hynes PS.Stranges D.Stupple PA.Guarna A.Dixon DJ. Org. Lett. 2007, 9: 2107 -
12i
Hynes PS.Stupple PA.Dixon DJ. Org. Lett. 2008, 10: 1389 -
12j
Wang J.Xie H.Li H.Zu L.Wang W. Angew. Chem. Int. Ed. 2008, 47: 4177 -
12k
Lu L.-Q.Cao Y.-J.Liu X.-P.An J.Yao C.-J.Ming Z.-H.Xiao W.-J. J. Am. Chem. Soc. 2008, 130: 6946 -
13a
Li B.-J.Jiang L.Liu M.Chen Y.-C.Ding L.-S.Wu Y. Synlett 2005, 603 -
13b
Liu T.-Y.Long J.Li B.-J.Jiang L.Li R.Wu Y.Ding L.-S.Chen Y.-C. Org. Biomol. Chem. 2006, 4: 2097 -
13c
Liu T.-Y.Li R.Chai Q.Long J.Li B.-J.Wu Y.Ding L.-S.Chen Y.-C. Chem. Eur. J. 2007, 13: 319 -
13d
Liu T.-Y.Cui H.-L.Long J.Li B.-J.Wu Y.Ding L.-S.Chen Y.-C. J. Am. Chem. Soc. 2007, 129: 1878 -
13e
Zhang Y.Liu Y.-K.Kang T.-R.Hu Z.-K.Chen Y.-C. J. Am. Chem. Soc. 2008, 130: 2456 -
13f
Tian X.Jiang K.Peng J.Du W.Chen Y.-C. Org. Lett. 2008, 10: 3583 -
13g
Han B.Liu Q.-P.Li R.Tian X.Xiong X.-F.Deng J.-G.Chen Y.-C. Chem. Eur. J. 2008, 14: 8094 -
15a
Taylor MS.Jacobsen EN. J. Am. Chem. Soc. 2004, 126: 10558 -
15b
Taylor MS.Tokunaga N.Jacobsen EN. Angew. Chem. Int. Ed. 2005, 44: 6700 -
15c
Raheem IT.Thiara PS.Peterson EA.Jacobsen EN. J. Am. Chem. Soc. 2007, 129: 13404
References and Notes
β-Nitrostyrene exhibited very sluggish reactivity in the catalytic 1,3-dipolar cycloaddition even at much higher temperature (>50 ˚C).
16Thiourea-pyrrole catalysts 1f-k were prepared in a similar procedure as 1e, see ref. 14.
17
General Procedure
for the Asymmetric 1,3-Dipolar Cycloaddition Reaction
Catalyst 1j (6.6 mg, 0.01 mmol, 10 mol%),
nitrone 2a (20.0 mg, 0.1 mmol) and 4 Å MS
(50 mg) were stirred in redistilled MTBE (0.4 mL) at 0 ˚C.
Then nitroolefin 3a (14.0 mg, 0.12 mmol)
in MTBE (0.1 mL) was added. After 6 d, product 4a was
isolated by FC on SiO2 eluted with EtOAc-PE
as an oil; 24.5 mg, 79% yield; R
f
= 0.5
(PE-EtOAc, 15:1); [α]D
²0 -101.3
(c 1.00 in CH2Cl2);
82% ee, determined by HPLC analysis [Daicel chiralcel
OD, n-hexane-i-PrOH (95:5),
1.0 mL/min, λ = 254
nm, t
R(major) = 7.70
min, t
R(minor) = 11.16
min]. ¹H NMR (400 MHz, CDCl3): δ = 7.44-7.41
(m, 2 H), 7.35-7.33 (m, 3 H), 7.21-7.17 (m,
2
H), 7.04-6.98 (m, 3 H), 5.29 (dd, J = 9.2,
7.2 Hz, 1 H), 4.80 (t, J = 7.2
Hz, 1 H), 4.74 (d, J = 9.2
Hz, 1 H), 2.08-2.03 (m, 1 H), 1.14 (d, J = 6.8
Hz, 3 H), 1.02 (d, J = 6.8
Hz, 3 H) ppm. ¹³C NMR (50 MHz, CDCl3): δ = 148.1,
133.3, 129.2, 128.8, 128.7, 128.2, 124.1, 116.4, 94.5, 84.7, 73.0,
30.7, 19.0, 17.9 ppm. ESI-HRMS: m/z calcd
for C18H20N2O3 + Na:
335.1372; found: 335.1320.
General Procedure for the Synthesis of 2,3-Diamino-propanol 5 Compound 4a (31 mg, 0.1 mmol, 99% ee) and NiCl2˙6H2O (100 mg, 0.4 mmol) were stirred in MeOH (1 mL) and THF (0.5 mL) at r.t. for 10 min. Then NaBH4 (33 mg, 0.9 mmol) was added in portions at 0 ˚C. After stirring for 5 min, EtOAc (5 mL) and H2O (5 mL) were added. After filtration, the filtrate was extracted with EtOAc (2 × 10 mL). The combined organic layers were dried over Na2SO4 and concentrated. The residue and (Boc)2O (26 mg, 0.12 mmol) were dissolved in CH2Cl2 and stirred for 2 h. The solvent was then removed in vacuo, and the residue was purified by flash chromatography on SiO2 (EtOAc-PE) to give N-Boc-diaminopropanol 5 as an oil; 35 mg, 91% yield for two steps; R f = 0.4 (PE-EtOAc, 5:1); [α]D ²0 +18.6 (c 0.70 in CH2Cl2); 99% ee, determined by HPLC analysis [Daicel chiralcel AD, n-hexane-i-PrOH (90:10), 1.0 mL/min, λ = 254 nm, t R(minor) = 5.48 min, t R(major) = 9.32 min]. ¹H NMR (400 MHz, CDCl3): δ = 7.33-7.28 (m, 4 H), 7.23-7.21 (m, 1 H), 7.11-7.07 (m, 2 H), 6.70-6.67 (m, 1 H), 6.59-6.57 (m, 2 H), 5.46 (s, 1 H), 5.12 (d, J = 8.4 Hz, 1 H), 4.84-4.77 (m, 1 H), 4.03 (s, 1 H), 3.54 (s, 1 H), 1.86-1.84 (m, 1 H), 1.30 (s, 9 H), 1.06 (d, J = 6.8 Hz, 3 H), 1.02 (d, J = 6.4 Hz, 3 H) ppm. ¹³C NMR (50 MHz, CDCl3): δ = 155.4, 147.0, 140.6, 129.1, 128.5, 127.1, 126.9, 118.3, 114.8, 79.6, 78.8, 58.6, 56.1, 29.9, 28.2, 19.4, 18.2 ppm. ESI-HRMS: m/z calcd for C23H32N2O3 + H: 385.2491; found: 385.2453.
19CCDC-700901 (6) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.