Subscribe to RSS
DOI: 10.1055/s-0028-1087340
Ionic Liquid - an Efficient Recyclable System for the Synthesis of 2,4-Disubstituted Quinolines via Meyer-Schuster Rearrangement
Publication History
Publication Date:
12 November 2008 (online)
Abstract
An improved and eco-friendly method for the synthesis of 2,4-disubstituted quinolines via Meyer-Schuster rearrangement of 2-aminoaryl ketones and phenylacetylenes in the presence of zinc trifluoromethanesulfonate in [hmim]PF6 has been developed.
Key words
ionic liquid - Meyer-Schuster rearrangement - green solvents - quinolines
- 1
Earle MJ.McCormac PB.Seddon KR. Green Chem. 1999, 1: 23 - 2
Kitazume T.Kassai K. Green Chem. 2001, 3: 30 - 3
Owens GS.Abu-Omar MM. Chem. Commun. 2000, 1165 - For reviews, see:
-
4a
Wasserscheid P.Keim W. Angew. Chem. Int. Ed. 2000, 39: 3772 -
4b
Dupont J.Suarez PAZ.Umpierre AP.De Souza RF. J. Braz. Chem. Soc. 2000, 11: 293 -
4c
Welton T. Chem. Rev. 1999, 99: 2071 - 5
Ranu BC.Banerjee S. Org. Lett. 2005, 7: 3049 - 6
Du DM.Chen X. Chin. J. Org. Chem. 2003, 23: 331 - 7
Dubreuil JF.Bozureau JP. Tetrahedron Lett. 2000, 41: 7351 - 8
Qiao K.Yokoyama C. Chem. Lett. 2004, 33: 472 - 9
Dubreuil JF.Bourahala K. Catal. Commun. 2002, 3: 185 - 10
Sheldon R. Chem. Commun. 2001, 2399 - 11
Gordon CM. Appl. Catal., A 2001, 222: 101 - 12
Zimmermann HE.Wang PA. J. Am. Chem. Soc. 1993, 115: 2205 -
13a
Welton T. Coord. Chem. Rev. 2004, 104: 2459 -
13b
Dupont J.de Souza RF.Suarez PAZ. Chem. Rev. 2002, 102: 3667 -
13c
Li S.Lin Y.Xie H.Zhang S.Xu J. Org. Lett. 2006, 8: 391 -
14a
Boon JA.Levisky JA.Pflug JL.Wilkes JS.
J. Org. Chem. 1986, 51: 480 -
14b
Luer GD.Bartak DE. J. Org. Chem. 1982, 47: 1238 -
15a
Dyson PJ.Ellis DJ.Parker DG.Welton T. Chem. Commun. 1999, 25 -
15b
Monteiro AL.Zinn FK.de Souza RF.Dupont J. Tetrahedron: Asymmetry 1997, 15: 1217 - 16
Ellis B.Keim W.Wasserscheid P. Chem. Commun. 1999, 337 - 17
Gordon CM.McCluskey A. Chem. Commun. 1999, 1431 -
18a
Bohm VPW.Herrmann WA. Chem. Eur. J. 2000, 6: 1017 -
18b
Carmichael AJ.Earle MJ.Holbrey JD.McCormac PB.Seddon KR. Org. Lett. 1999, 1: 997 -
19a
Earle J.McCormac PB.Seddon KR. Green Chem. 1999, 1: 23 -
19b
Fisher T.Sethi A.Welton T.Woolf J. Tetrahedron Lett. 1999, 40: 793 -
20a
Larsen RD.Corley EG.King AO.Carrol JD.Davis P.Verhoeven TR.Reider PJ.Labelle M.Gauthier JY.Xiang YB.Zamboni RJ. J. Org. Chem. 1996, 61: 3398 -
20b
Chen YL.Fang KC.Sheu JY.Hsu SL.Tzeng CC. J. Med. Chem. 2001, 44: 2374 -
20c
Roma G.Braccio MD.Grossi G.Mattioli F.Ghia M. Eur. J. Med. Chem. 2000, 35: 1021 -
20d
Kalluraya B.Sreenivasa S. Farmaco 1998, 53: 399 -
20e
Dube D.Blouin M.Brideau C.Chan CC.Desmarais S.Ethier D.Falgueyret JP.Friesen RW.Girard M.Girard Y.Guay J.Riendeau D.Tagari P.Young RN. Bioorg. Med. Chem. Lett. 1998, 8: 1255 -
21a
Stille JK. Macromolecules 1981, 14: 870 -
21b
Agrawal AK.Jenekhe SA. Macromolecules 1991, 24: 6806 -
21c
Agrawal AK.Jenekhe SA. Chem. Mater. 1992, 4: 95 -
21d
Agrawal AK.Jenekhe AK.Jenekhe SA. Chem. Mater. 1993, 28: 895 -
21e
Agrawal AK.Jenekhe SA. Chem. Mater. 1993, 5: 633 -
21f
Jenekhe SA.Lu L.Alam MM. Macromolecules 2001, 34: 7315 -
21g
Agrawal AK.Jenekhe SA.Vanherzeele H.Meth JS. J. Phys. Chem. 1992, 96: 2837 -
21h
Jegou G.Jenekhe SA. Macromolecules 2001, 34: 7926 -
21i
Lu L.Jenekhe SA. Macromolecules 2001, 34: 6249 -
21j
Agrawal AK.Jenekhe SA. Chem. Mater. 1996, 8: 579 -
21k
Jenekhe SA.Zhang X.Chen XL.Choong VE.Gao Y.Hsieh BR. Chem. Mater. 1997, 9: 409 -
21l
Zhang X.Shetty AS.Jenekhe SA. Macromolecules 1999, 32: 7422 -
21m
Zhang X.Shetty AS.Jenekhe SA. Macromolecules 2000, 33: 2069 -
22a
Jones G. In Comprehensive Heterocyclic Chemistry II Vol. 5:Katritzky AR.Rees CW. Pergamon; New York: 1996. p.167 -
22b
Cho CS.Oh BH.Kim TJ.Shim SC. Chem. Commun. 2000, 1885 -
22c
Jiang B.Si YG.
J. Org. Chem. 2002, 67: 9449 -
22d
Skraup H. Ber. Dtsch. Chem. Ges. 1880, 13: 2086 -
22e
Friedländer P. Ber. Dtsch. Chem. Ges. 1882, 15: 2572 -
22f
Mansake RH.Kulka M. Org. React. 1953, 7: 59 -
22g
Linderman RJ.Kirollos KS. Tetrahedron Lett. 1990, 31: 2689 -
22h
Theoclitou ME.Robinson LA. Tetrahedron Lett. 2002, 43: 3907 - 23
Hoemann MZ.Kumaravel G.Xie RL.Rossi RF.Meyer S.Sidhu A.Cuny GD.Hauske JR. Bioorg. Med. Chem. Lett. 2000, 10: 2675 -
24a
Du W.Curran DP. Org. Lett. 2003, 5: 1765 -
24b
Dormer PG.Eng KK.Farr RN.Humphrey GR.McWilliams JC.Reider PJ.Sager JW.Volante RP. J. Org. Chem. 2003, 68: 467 -
24c
Matsugi M.Tabusa F.Minamikawa J. Tetrahedron Lett. 2000, 41: 8523 -
24d
Lindsay DM.Dohle W.Jensen AE.Kopp F.Knochel P. Org. Lett. 2002, 4: 1819 - 25
Arcadi A.Chiarini M.Giuseppe SD.Marinelli F. Synlett 2003, 203 ; and references cited therein - 26
Fehnel EA. J. Org. Chem. 1996, 31: 2899 - 27
Amii H.Kishikawa Y.Uneyama K. Org. Lett. 2001, 3: 1109 -
28a
Li AH.Ahmed E.Chen X.Cox M.Crew AP.Dong HQ.Jin MZ.Ma IF.Panicker B.Siu KW.Steing AG.Stolz KM.Tavares PAR.Volk B.Weng QH.Werner D.Mulyihill M. Org. Biomol. Chem. 2007, 5: 61 -
28b
Janza B.Studer A. Org. Lett. 2006, 8: 1875 -
28c
Jia CS.Wang GW. Lett. Org. Chem. 2006, 3: 289 -
29a
Zolfogol MA.Salehi P.Ghaderi A.Shiri M.Tanbakouchian Z. J. Mol. Catal. A: Chem. 2006, 259: 253 -
29b
Li YS.Wu CL.Huang JL.Su WK. Synth. Commun. 2006, 36: 3065 -
29c
Selvam NP.Saravan C.Muralidharan D.Perumal PT. J. Heterocycl. Chem. 2006, 43: 1379 - 31
Kalyanam N.Rao GW. Tetrahedron Lett. 1993, 34: 1647 - 32
Edens M.Boerner D.Chase CR.Nass D.Schiavelli MD. J. Org. Chem. 1977, 42: 3403 - For some of the most recent work on quinoline synthesis, see:
-
33a
Ahmed N.Lier EV. Tetrahedron Lett. 2007, 48: 13 -
33b
Arcadi A.Bianchi G.Inesi A.Marinelli F.Rossi I. Synlett 2007, 1031 -
33c
Sakai N.Annaka K.Konakahara T. J. Org. Chem. 2006, 71: 3653 -
33d
Atechian S.Nock N.Norcross RD.Ratni H.Thomas AW.Verron J.Masciadri R. Tetrahedron 2007, 63: 2811 -
33e
Wang G.-W.Jia CS.Dong Y.-W. Tetrahedron Lett. 2006, 47: 1059 -
33f
Subhas Bose D.Kumar RK. Tetrahedron Lett. 2006, 47: 813 -
33g
Lee BS.Lee JH.Chi DY. J. Org. Chem. 2002, 67: 7884 -
33h
Jia CS.Zhang Z.Tu SJ.Wang GW. Org. Biomol. Chem. 2006, 4: 104 - 34
Cheng C.-C.Yan S.-J. Org. React. 1982, 28: 37 ; yields of 67% and 55% were reported for 3d and 3h, respectively
References and Notes
General Procedure
for the Synthesis of 2,4-Disubstituted Quinoline Derivatives under
Thermolytic Conditions Using Ionic Liquids
A mixture
of 2-amino-5-chloro-2′-fluoro-benzophenone (1a,
0.25 g, 1 mmol), and phenylacetylene (0.18 g, 1.8 mmol) in 1-hexyl-3-methylimidazolium
hexafluoro-phosphate (1 g) was placed in a round-bottom flask (50
mL) in the presence of Zn(OTf)2 (15 mg). Two phases were formed
at r.t. The flask was then dipped in a pre-heated oil bath at 80-90 ˚C
(bath temperature), the mixture becomes homogeneous, and was stirred
for about 2.5 h. After completion (monitored by TLC), the reaction
mixture was cooled to r.t. and extracted with Et2O (2 × 15
mL). The ether layer was dried over anhyd Na2SO4 for
10 h and concentrated in a rotary evaporator to half the volume
and left overnight. The yellow crystals of the products so obtained
was filtered, dried, and recrystallized from CHCl3-MeOH
(1:1) mixture to get the pure product; mp 125 ˚C
in 98% yield. The filtrate containing the Et2O
is evaporated to expel the Et2O completely and ionic
liquid is reused directly for the second run. Similarly other 2-aminoaryl
ketones and phenylacetylene were reacted in the presence of Zn(OTf)2 under
thermal heating at 80-90 ˚C to produce
the corresponding quinoline derivatives in excellent yields. The results
are summarized in the Table
[¹]
.
2-Phenyl-4-(2′-fluorophenyl)-6-chloroquinoline
(3a)
Mp 125 ˚C. IR (KBr): 1615,
1370, 1280, 1165, 1125 cm-¹. ¹H
NMR (90 MHz, CDCl3): δ = 7.15-7.28
(m, 7 H), 7.72 (m, 1 H), 8.02 (m, 1 H), 8.10-8.30 (m, 4
H). Anal. Calcd for C21H13ClFN: C, 75.68;
H, 3.90; N, 4.20. Found: C, 75.70; H, 4.02; N, 4.11. MS: m/z = 333 [M+].
2,4-Diphenylquinoline (3b)
Mp
107 ˚C. IR (KBr): 1610, 1370, 1270, 1160, 1125
cm-¹. ¹H NMR (90
MHz, CDCl3): δ = 7.10-7.23
(m, 9 H), 7.65 (m, 1 H), 7.95 (m, 1 H), 8.10-8.25 (m, 4
H). Anal. Calcd for C21H15N: C, 89.69; H,
5.34; N, 4.98. Found: C, 89.75; H, 5.42; N, 4.88. MS: m/z = 281 [M+].
6-Chloro-2,4-diphenylquinoline (3c)
Mp
98 ˚C. IR (KBr): 1610, 1375, 1270, 1165, 1125
cm-¹. ¹H NMR (90
MHz, CDCl3): δ = 7.12-7.25
(m, 8 H), 7.65 (m,
1 H), 8.05 (m, 1 H), 8.13-8.28
(m, 4 H). Anal. Calcd for C21H14ClN: C, 80.00;
H, 4.44; N, 4.44. Found: C, 80.09; H, 4.50; N, 4.35. MS: m/z = 315 [M+].
2,4-Diphenyl-6-nitroquinoline (3d)
Mp
264 ˚C. IR (KBr): 1630, 1375, 1240, 1150, 1040
cm-¹. ¹H NMR (90
MHz, CDCl3): δ = 7.25-7.65
(m, 8 H), 7.83 (m, 1 H), 8.05-8.15 (m, 5 H). Anal. Calcd
for C21H14N2O2: C, 77.30;
H, 4.29; N, 8.59. Found: C, 77.37; H, 4.20; N, 8.68. MS: m/z = 326 [M+].
2,4-Diphenyl-8-nitroquinoline (3e)
Mp
264 ˚C. IR (KBr): 1635, 1375, 1240, 1150, 1035
cm-¹. ¹H NMR (90
MHz, CDCl3): δ = 7.25-7.60
(m, 8 H), 7.75 (m, 1 H), 8.12-8.20 (m, 5 H). Anal. Calcd
for C21H14N2O2: C, 77.30;
H, 4.29; N, 8.59. Found: C, 77.41; H, 4.35; N, 8.49. MS: m/z = 326 [M+].
2-Phenyl-4-(2′-chlorophenyl)-6-chloroquinoline
(3f)
Mp 112 ˚C. IR (KBr): 1615,
1375, 1275, 1165, 1130 cm-¹. ¹H
NMR (90 MHz, CDCl3): δ = 7.30 (s, 1
H), 7.42-7.88 (m, 7 H), 8.15 (s, 1 H), 8.16-8.25
(m, 4 H). Anal. Calcd for C21H13Cl2N:
C, 72.21; H, 3.72, N, 4.01. Found: C, 72.14; H, 3.80; N, 4.10. MS: m/z = 349 [M+].
2-Phenyl-4-(2′-fluorophenyl)quinoline
(3g)
Mp 90 ˚C. IR (KBr): 1615, 1375,
1275, 1160, 1130 cm-¹.
¹H
NMR (90 MHz, CDCl3): δ = 7.10-7.23
(m, 7 H), 7.65 (m, 1 H), 8.02 (m, 1 H), 8.15-8.30 (m, 4
H). Anal. Calcd for C21H14FN: C, 84.28; H,
4.68; N, 4.68. Found: C, 84.38; H, 4.58; N, 4.76. MS: m/z = 299 [M+].