Subscribe to RSS
DOI: 10.1055/s-0028-1087347
Synthesis of Unsymmetrical Heterobiaryls Using Palladium-Catalyzed Cross-Coupling Reactions of Lithium Organozincates
Publication History
Publication Date:
12 November 2008 (online)
Abstract
Several unsymmetrical heterobiaryls have been synthesized through palladium-catalyzed cross-coupling reactions of lithium triorganozincates. The latter have been prepared by deprotonative lithiation followed by transmetalation using non-hygroscopic ZnCl2˙TMEDA (0.33 equiv).
Key words
cross-coupling - heterocycle - metalation - palladium - zinc
-
1a
Stanforth SP. Tetrahedron 1998, 54: 263 -
1b
Hassan J.Sévignon M.Gozzi C.Schulz E.Lemaire M. Chem. Rev. 2002, 102: 1359 -
1c
Handbook
of Organopalladium Chemistry for Organic Synthesis
Vol.
1:
Negishi E.-i. Wiley-Interscience; New York: 2002. Chap. 3. -
1d
Chinchilla R.Nájera C.Yus M. Chem. Rev. 2004, 104: 2667 -
1e
Chinchilla R.Nájera C.Yus M. Arkivoc 2007, (x): 152 - 2
Kotha S.Lahiri K.Kashinath D. Tetrahedron 2002, 58: 9633 ; and references cited therein - 3
Stille JK. Angew. Chem. Int. Ed. Engl. 1986, 25: 508 -
4a
Negishi E.-i.King AO.Okukado N. J. Org. Chem. 1977, 42: 1821 -
4b
Negishi E.-i. Acc. Chem. Res. 1982, 15: 340 -
4c
Negishi E.-i. Metal-Catalyzed Cross-Coupling ReactionsDiederich F.Stang PJ. Wiley-VCH; New York: 1998. Chap. 1. -
5a
Erdik E. Organozinc Reagents in Organic Synthesis CRC Press; New York: 1996. -
5b
Organozinc
Reagents
Knochel P.Jones P. Oxford University Press; Oxford: 1999. -
6a
Active Metals
Fürstner A. VCH; Weinheim: 1996. -
6b
Majid TN.Knochel P. Tetrahedron Lett. 1990, 31: 4413 -
6c
Zhu L.Wehmeyer RM.Rieke RD. J. Org. Chem. 1991, 56: 1445 -
7a
Gosmini C.Lasry S.Nédélec J.-Y.Périchon J. Tetrahedron 1998, 54: 1289 -
7b
Kazmierski I.Gosmini C.Paris J.-M.Périchon J. Tetrahedron Lett. 2003, 44: 6417 - 8
Mutule I.Suna E. Tetrahedron 2005, 61: 11168 - 9
Gauthier DR.Szumigala RH.Dormer PG.Armstrong JD.Volante RP.Reider PJ. Org. Lett. 2002, 4: 375 - 10
Miller JA.Farrell RP. Tetrahedron Lett. 1998, 39: 7275 -
11a
Kondo Y.Takazawa N.Yamazaki C.Sakamoto T.
J. Org. Chem. 1994, 59: 4717 -
11b
Kondo Y.Komine T.Fujinami M.Uchiyama M.Sakamoto T. J. Comb. Chem. 1999, 1: 123 -
11c
Uchiyama M.Furuyama T.Kobayashi M.Matsumoto Y.Tanaka K. J. Am. Chem. Soc. 2006, 128: 8404 -
12a
Kondo Y.Shilai M.Uchiyama M.Sakamoto T. J. Am. Chem. Soc. 1999, 121: 3539 -
12b
L’Helgoual’ch JM.Seggio A.Chevallier F.Yonehara M.Jeanneau E.Uchiyama M.Mongin F. J. Org. Chem. 2008, 73: 177 - Concerning the generation of(hetero)aryl zincates by deprotonation, see also:
-
12c
Mulvey RE. Organometallics 2006, 25: 1060 -
12d
Mulvey RE.Mongin F.Uchiyama M.Kondo Y. Angew. Chem. Int. Ed. 2007, 46: 3802 - 13 Benzo[b]furan
has previously been metalated using tert-butyllithium
in diethyl ether at -78 ˚C:
Zhang H.Larock RC. J. Org. Chem. 2002, 67: 7048 - For nickel-catalyzed cross-couplings of arylzinc compounds with aryl chlorides, see:
-
14a
House HO.Ghali NI.Haack JL.VanDerveer D. J. Org. Chem. 1980, 45: 1807 -
14b
Lebedev SA.Sorokina RS.Berestova SS.Petrov ES.Beletskaya IP. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1986, 35: 620 -
14c
Miller JA.Farrell RP. Tetrahedron Lett. 1998, 39: 6441 -
14d
Lipshutz BH.Blomgren PA.Kim S.-K. Tetrahedron Lett. 1999, 40: 197 -
14e
Lipshutz BH.Blomgren PA. J. Am. Chem. Soc. 1999, 121: 5819 -
14f
Walla P.Kappe CO. Chem. Commun. 2004, 564 -
14g
Gavryushin A.Kofink C.Manolikakes G.Knochel P. Tetrahedron 2006, 62: 7521 - For nickel-catalyzed cross-couplings of arylzinc compounds with aryl bromides, see for example:
-
14h
Wu X.Rieke RD. J. Org. Chem. 1 995, 60: 6658 - 16
Quintin J.Franck X.Hocquemiller R.Figadère B. Tetrahedron Lett. 2002, 43: 3547 - 17
Fürstner A.Leitner A.Méndez M.Krause H. J. Am. Chem. Soc. 2002, 124: 13856 -
18a
Negishi E.-i.Luo F.-T.Frisbee R.Matsushita H. Heterocycles 1982, 18: 117 - For palladium-catalyzed cross-couplings of arylzinc compounds with aryl chlorides, see for example:
-
18b
Bracher F.Hildebrand D. Tetrahedron 1994, 50: 12329 -
18c
Amat M.Hadida S.Pshenichnyi G.Bosch J. J. Org. Chem. 1997, 62: 3158 -
18d
Herrmann WA.Bohm VPW.Reisinger C.-P. J. Organomet. Chem. 1999, 576: 23 -
18e
Dai C.Fu GC. J. Am. Chem. Soc. 2001, 123: 2719 -
18f
Simkovsky NM.Ermann M.Roberts SM.Parry DM.Baxter AD. J. Chem. Soc., Perkin Trans. 1 2002, 1847 -
18g
Li GY. J. Org. Chem. 2002, 67: 3643 -
18h
Lützen A.Hapke M.Staats H.Bunzen J. Eur. J. Org. Chem. 2003, 3948 -
18i
Stanetty P.Schnürch M.Mihovilovic MD. Synlett 2003, 1862 -
18j
Milne J.Buchwald SL. J. Am. Chem. Soc. 2004, 126: 13028 -
18k
Switzer C.Sinha S.Kim PH.Heuberger BD. Angew. Chem. Int. Ed. 2005, 44: 1529 - 19 For the use of PdCl2(dppf)
as a highly effective catalyst for the coupling of organozinc reagents,
see:
Hayashi T.Konishi M.Kobri Y.Kumada M.Higuchi T.Hirotsu K. J. Am. Chem. Soc. 1984, 106: 158 -
20a
Compound 2a: pale yellow powder; mp 186 ˚C. The spectral data were found identical to those previously described, see ref. 20b. ¹³C NMR (50 MHz, CD3COCD3):
δ = 110.9, 112.4, 115.4, 123.5, 124.7, 128.1, 128.7, 152.2, 156.5, 158.6, 161.8, 162.1. -
20b
Strekowski L.Harden MJ.Grubb WB.Patterson SE.Czarny A.Mokrosz MJ.Cegla MT.Wydra RL. J. Heterocycl. Chem. 1990, 27: 1393 - 23 Compound 2b:
white powder; mp 88 ˚C. The spectral data were
found identical to those previously described. See:
Mongin F.Bucher A.Bazureau JP.Bayh O.Awad H.Trécourt F. Tetrahedron Lett. 2005, 46: 7989 - 24
Ramanathan V.Levine R. J. Org. Chem. 1962, 27: 1216 - Benzo[b]thiophene has previously been metalated using butyllithium in THF at 0 ˚C, see:
-
26a
Jen K.-Y.Cava MP. J. Org. Chem. 1983, 48: 1449 - Thiophene has previously been metalated using butyllithium in THF at temperatures between -20 ˚C and r.t., see:
-
26b
Surry DS.Fox DJ.MacDonald SJF.Spring DR. Chem. Commun. 2005, 2589 -
29a
Compound 9a: white powder; mp 124 ˚C. The physical data were found identical to those previously described in ref. 29b. ¹H NMR (200 MHz, CD3COCD3): δ = 7.17 (dd, J = 7.5, 5.7 Hz, 1 H), 7.46 (d, J = 7.8 Hz, 1 H), 7.59 (dd, J = 7.5, 1.5 Hz, 1 H), 7.82 (dd, J = 5.7, 1.5 Hz, 1 H), 8.53 (d, J = 8.1 Hz, 1 H). ¹³C NMR (50 MHz, CD3COCD3): δ = 113.7, 128.8, 129.2, 131.8, 140.5, 159.5, 161.7, 162.0.
-
29b
Brown DJ.Cowden WB.Strekowski L. Aust. J. Chem. 1982, 35: 1209-1214 - Compound 10: pale yellow powder; mp 67 ˚C. The spectral data were found identical to those previously described. See:
-
30a
Constable EC.Sousa LR. J. Organomet. Chem. 1992, 427: 125 -
30b
Bayh O.Awad H.Mongin F.Hoarau C.Trécourt F.Quéguiner G.Marsais F.Blanco F.Abarca B.Ballesteros R. Tetrahedron 2005, 61: 4779 - 31
N-Boc
pyrrole has previously been metalated using LiTMP in THF at -75 ˚C.
See:
Hasan I.Marinelli ER.Lin L.-CC.Fowler FW.Levy AB. J. Org. Chem. 1981, 46: 157 - 32 Compound 12:
yellow oil. The spectral data were found identical to those previously
described:
Semmelback MF.Chlenov A.Douglas M. J. Am. Chem. Soc. 2005, 127: 7759 - 33 Concerning the direct lithiation
of anisole, see:
Shirley DA.Johnson JR.Hendrix JP. J. Organomet. Chem. 1968, 11: 209 - 34 Compound 14:
colorless oil. The spectral data were found identical to those previously
described:
Mongin F.Mojovic L.Guillamet B.Trécourt F.Quéguiner G. J. Org. Chem. 2002, 67: 8991 - For the deprotonation of 2-fluoropyridine using a lithium amide, see:
-
36a
Gribble GW.Saulnier MG. Heterocycles 1993, 35: 151 -
36b
Estel L.Marsais F.Quéguiner G.
J. Org. Chem. 1988, 53: 2740 - 37 See, for example:
Riguet E.Alami M.Cahiez G. Tetrahedron Lett. 1997, 38: 4397 - For palladium-catalyzed cross-couplings of arylzinc compounds with aryl bromides, see for example:
-
38a
Amatore C.Jutand A.Negri S.Fauvarque J.-F. J. Organomet. Chem. 1990, 390: 389 -
38b
Bumagin NA.Sokolova AF.Beletskaya IP. Russ. Chem. Bull. 1993, 42: 1926 -
38c
Borner RC.Jackson RFW. J. Chem. Soc., Chem. Commun. 1994, 845 -
38d
Goldfinger MB.Crawford KB.Swager TM. J. Am. Chem. Soc. 1997, 119: 4578 -
38e
Hargreaves SL.Pilkington BL.Russell SE.Worthington PA. Tetrahedron Lett. 2000, 41: 1653 -
38f
Loren JC.Siegel JS. Angew. Chem. Int. Ed. 2001, 40: 754 -
38g
Alami M.Peyrat J.-F.Belachmi L.Brion J.-D. Eur. J. Org. Chem. 2001, 4207 -
38h
Karig G.Thasana N.Gallagher T. Synlett 2002, 808 -
38i
Balle T.Andersen K.Vedsø P. Synthesis 2002, 1509 -
38j
Kondolff I.Doucet H.Santelli M. Organometallics 2006, 25: 5219 -
38k
Akao A.Tsuritani T.Kii S.Sato K.Nonoyama N.Mase T.Yasuda N. Synlett 2007, 31 - 39
Legault CY.Garcia Y.Merlic CA.Houk KN. J. Am. Chem. Soc. 2007, 129: 12664 - 40 Compound 9b:
beige powder; mp 104 ˚C. The spectral data were
found identical to those previously described:
Takahashi K.Suzuki T.Akiyama K.Ikegami Y.Fukazawa Y. J. Am. Chem. Soc. 1991, 113: 4576 - 41 Compound 9c:
yellow powder; mp 135 ˚C. The spectral data were
found identical to those previously described:
Li J.-H.Zhu Q.-M.Xie Y.-X. Tetrahedron 2006, 62: 10888 - 42 Compound 9d:
white powder; mp 134 ˚C. The spectral data were
found identical to those previously described:
Sieber F.Wentworth P.Janda KD. J. Comb. Chem. 1999, 1: 540 - 43 Compound 9e:
white solid; mp 88 ˚C. The spectral data were found
identical to those previously described:
Denmark SE.Baird JD. Org. Lett. 2006, 8: 793 - 44
Bonnet V.Mongin F.Trécourt F.Quéguiner G.Knochel P. Tetrahedron Lett. 2001, 42: 5717 - 45
Amatore C.Carré E.Jutand A.Tanaka H.Quinghua R.Torii S. Chem. Eur. J. 1996, 2: 957 - 46
Isobe M.Kondo S.Nagasawa N.Goto T. Chem. Lett. 1977, 679
References and Notes
For discussions on the advantages of palladium over nickel, see refs. 4c and 5b.
21Slightly lower cross-coupling yields have been observed with higher order zincate compared with lithium triorganozincate, see ref. 9.
22No reaction takes place in the absence of transition metal. Note that product 2a has previously been obtained by addition of 2-benzofuryllithium at the 4-position of 2-chloropyrimidine followed by rearomatization using DDQ in 38% yield, see ref. 20b.
25Compound 4: white powder; mp 88 ˚C. The spectral data were found identical to those previously described, see. ref. 20b. ¹³C NMR (50 MHz, CDCl3): δ = 113.1, 113.1, 114.5, 146.2, 150.4, 158.1, 159.9, 161.7.
27Compound 8a: pale yellow powder; mp 198 ˚C. The spectral data were found identical to those previously described, see ref. 20b. ¹³C NMR (50 MHz, CDCl3): δ = 114.5, 122.9, 125.2, 125.3, 126.3, 126.9, 139.8, 140.1, 141.8, 159.7, 161.9, 162.3.
28Compound 8b: white powder; mp 126 ˚C. The physical and spectral data were found identical to those of a commercial sample (Aldrich).
35Compound 16: beige powder; mp <50 ˚C. ¹H NMR (200 MHz, CDCl3): δ = 7.25-7.37 (m, 2 H), 7.72-7.91 (m, 2 H), 8.25 (d, J = 3.2 Hz, 1 H), 8.47-8.58 (m, 1 H), 8.72 (d, J = 4.8 Hz, 1 H). ¹³C NMR (50 MHz, CDCl3): δ = 122.1 (d, J = 4.3 Hz), 122.6, 123.2, 124.3 (d, J = 10.4 Hz), 136.8, 141.6 (d, J = 3.8 Hz), 147.7 (d, J = 15.1 Hz), 150.0, 151.4 (d, J = 6.8 Hz), 160.9 (d, J = 241 Hz). HRMS: m/z calcd for C10H7N2F [M+]: 174.0593; found: 174.0595.