Synlett 2008(19): 2955-2960  
DOI: 10.1055/s-0028-1087347
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Unsymmetrical Heterobiaryls Using Palladium-Catalyzed Cross-Coupling Reactions of Lithium Organozincates

Anne Seggioa, Anny Jutandb, Ghislaine Priemc, Florence Mongin*a
a Chimie et Photonique Moléculaires, UMR CNRS 6510, Université de Rennes 1, Bâtiment 10A, Case 1003, Campus Scientifique de Beaulieu, 35042 Rennes Cedex, France
Fax: +33(2)23236931; e-Mail: florence.mongin@univ-rennes1.fr;
b Ecole Normale Supérieure - CNRS, Département de Chimie, 24 Rue Lhomond, 75231 Paris Cedex 5, France
c GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow CM19 5AW, UK
Further Information

Publication History

Received 29 July 2008
Publication Date:
12 November 2008 (online)

Abstract

Several unsymmetrical heterobiaryls have been synthesized through palladium-catalyzed cross-coupling reactions of lithium triorganozincates. The latter have been prepared by deprotonative lithiation followed by transmetalation using non-­hygroscopic ZnCl2˙TMEDA (0.33 equiv).

    References and Notes

  • 1a Stanforth SP. Tetrahedron  1998,  54:  263 
  • 1b Hassan J. Sévignon M. Gozzi C. Schulz E. Lemaire M. Chem. Rev.  2002,  102:  1359 
  • 1c Handbook of Organopalladium Chemistry for Organic Synthesis   Vol. 1:  Negishi E.-i. Wiley-Interscience; New York: 2002.  Chap. 3.
  • 1d Chinchilla R. Nájera C. Yus M. Chem. Rev.  2004,  104:  2667 
  • 1e Chinchilla R. Nájera C. Yus M. Arkivoc  2007,  (x):  152 
  • 2 Kotha S. Lahiri K. Kashinath D. Tetrahedron  2002,  58:  9633 ; and references cited therein
  • 3 Stille JK. Angew. Chem. Int. Ed. Engl.  1986,  25:  508 
  • 4a Negishi E.-i. King AO. Okukado N. J. Org. Chem.  1977,  42:  1821 
  • 4b Negishi E.-i. Acc. Chem. Res.  1982,  15:  340 
  • 4c Negishi E.-i. Metal-Catalyzed Cross-Coupling Reactions   Diederich F. Stang PJ. Wiley-VCH; New York: 1998.  Chap. 1.
  • 5a Erdik E. Organozinc Reagents in Organic Synthesis   CRC Press; New York: 1996. 
  • 5b Organozinc Reagents   Knochel P. Jones P. Oxford University Press; Oxford: 1999. 
  • 6a Active Metals   Fürstner A. VCH; Weinheim: 1996. 
  • 6b Majid TN. Knochel P. Tetrahedron Lett.  1990,  31:  4413 
  • 6c Zhu L. Wehmeyer RM. Rieke RD. J. Org. Chem.  1991,  56:  1445 
  • 7a Gosmini C. Lasry S. Nédélec J.-Y. Périchon J. Tetrahedron  1998,  54:  1289 
  • 7b Kazmierski I. Gosmini C. Paris J.-M. Périchon J. Tetrahedron Lett.  2003,  44:  6417 
  • 8 Mutule I. Suna E. Tetrahedron  2005,  61:  11168 
  • 9 Gauthier DR. Szumigala RH. Dormer PG. Armstrong JD. Volante RP. Reider PJ. Org. Lett.  2002,  4:  375 
  • 10 Miller JA. Farrell RP. Tetrahedron Lett.  1998,  39:  7275 
  • 11a Kondo Y. Takazawa N. Yamazaki C. Sakamoto T.
    J. Org. Chem.  1994,  59:  4717 
  • 11b Kondo Y. Komine T. Fujinami M. Uchiyama M. Sakamoto T. J. Comb. Chem.  1999,  1:  123 
  • 11c Uchiyama M. Furuyama T. Kobayashi M. Matsumoto Y. Tanaka K. J. Am. Chem. Soc.  2006,  128:  8404 
  • 12a Kondo Y. Shilai M. Uchiyama M. Sakamoto T. J. Am. Chem. Soc.  1999,  121:  3539 
  • 12b L’Helgoual’ch JM. Seggio A. Chevallier F. Yonehara M. Jeanneau E. Uchiyama M. Mongin F. J. Org. Chem.  2008,  73:  177 
  • Concerning the generation of(hetero)aryl zincates by deprotonation, see also:
  • 12c Mulvey RE. Organometallics  2006,  25:  1060 
  • 12d Mulvey RE. Mongin F. Uchiyama M. Kondo Y. Angew. Chem. Int. Ed.  2007,  46:  3802 
  • 13 Benzo[b]furan has previously been metalated using tert-butyllithium in diethyl ether at -78 ˚C: Zhang H. Larock RC. J. Org. Chem.  2002,  67:  7048 
  • For nickel-catalyzed cross-couplings of arylzinc compounds with aryl chlorides, see:
  • 14a House HO. Ghali NI. Haack JL. VanDerveer D. J. Org. Chem.  1980,  45:  1807 
  • 14b Lebedev SA. Sorokina RS. Berestova SS. Petrov ES. Beletskaya IP. Bull. Acad. Sci. USSR, Div. Chem. Sci.  1986,  35:  620 
  • 14c Miller JA. Farrell RP. Tetrahedron Lett.  1998,  39:  6441 
  • 14d Lipshutz BH. Blomgren PA. Kim S.-K. Tetrahedron Lett.  1999,  40:  197 
  • 14e Lipshutz BH. Blomgren PA. J. Am. Chem. Soc.  1999,  121:  5819 
  • 14f Walla P. Kappe CO. Chem. Commun.  2004,  564 
  • 14g Gavryushin A. Kofink C. Manolikakes G. Knochel P. Tetrahedron  2006,  62:  7521 
  • For nickel-catalyzed cross-couplings of arylzinc compounds with aryl bromides, see for example:
  • 14h Wu X. Rieke RD. J. Org. Chem.  1 995,  60:  6658 
  • 16 Quintin J. Franck X. Hocquemiller R. Figadère B. Tetrahedron Lett.  2002,  43:  3547 
  • 17 Fürstner A. Leitner A. Méndez M. Krause H. J. Am. Chem. Soc.  2002,  124:  13856 
  • 18a Negishi E.-i. Luo F.-T. Frisbee R. Matsushita H. Heterocycles  1982,  18:  117 
  • For palladium-catalyzed cross-couplings of arylzinc compounds with aryl chlorides, see for example:
  • 18b Bracher F. Hildebrand D. Tetrahedron  1994,  50:  12329 
  • 18c Amat M. Hadida S. Pshenichnyi G. Bosch J. J. Org. Chem.  1997,  62:  3158 
  • 18d Herrmann WA. Bohm VPW. Reisinger C.-P. J. Organomet. Chem.  1999,  576:  23 
  • 18e Dai C. Fu GC. J. Am. Chem. Soc.  2001,  123:  2719 
  • 18f Simkovsky NM. Ermann M. Roberts SM. Parry DM. Baxter AD. J. Chem. Soc., Perkin Trans. 1  2002,  1847 
  • 18g Li GY. J. Org. Chem.  2002,  67:  3643 
  • 18h Lützen A. Hapke M. Staats H. Bunzen J. Eur. J. Org. Chem.  2003,  3948 
  • 18i Stanetty P. Schnürch M. Mihovilovic MD. Synlett  2003,  1862 
  • 18j Milne J. Buchwald SL. J. Am. Chem. Soc.  2004,  126:  13028 
  • 18k Switzer C. Sinha S. Kim PH. Heuberger BD. Angew. Chem. Int. Ed.  2005,  44:  1529 
  • 19 For the use of PdCl2(dppf) as a highly effective catalyst for the coupling of organozinc reagents, see: Hayashi T. Konishi M. Kobri Y. Kumada M. Higuchi T. Hirotsu K. J. Am. Chem. Soc.  1984,  106:  158 
  • 20a

    Compound 2a: pale yellow powder; mp 186 ˚C. The spectral data were found identical to those previously described, see ref. 20b. ¹³C NMR (50 MHz, CD3COCD3):
    δ = 110.9, 112.4, 115.4, 123.5, 124.7, 128.1, 128.7, 152.2, 156.5, 158.6, 161.8, 162.1.

  • 20b Strekowski L. Harden MJ. Grubb WB. Patterson SE. Czarny A. Mokrosz MJ. Cegla MT. Wydra RL. J. Heterocycl. Chem.  1990,  27:  1393 
  • 23 Compound 2b: white powder; mp 88 ˚C. The spectral data were found identical to those previously described. See: Mongin F. Bucher A. Bazureau JP. Bayh O. Awad H. Trécourt F. Tetrahedron Lett.  2005,  46:  7989 
  • 24 Ramanathan V. Levine R. J. Org. Chem.  1962,  27:  1216 
  • Benzo[b]thiophene has previously been metalated using butyllithium in THF at 0 ˚C, see:
  • 26a Jen K.-Y. Cava MP. J. Org. Chem.  1983,  48:  1449 
  • Thiophene has previously been metalated using butyllithium in THF at temperatures between -20 ˚C and r.t., see:
  • 26b Surry DS. Fox DJ. MacDonald SJF. Spring DR. Chem. Commun.  2005,  2589 
  • 29a

    Compound 9a: white powder; mp 124 ˚C. The physical data were found identical to those previously described in ref. 29b. ¹H NMR (200 MHz, CD3COCD3): δ = 7.17 (dd, J = 7.5, 5.7 Hz, 1 H), 7.46 (d, J = 7.8 Hz, 1 H), 7.59 (dd, J = 7.5, 1.5 Hz, 1 H), 7.82 (dd, J = 5.7, 1.5 Hz, 1 H), 8.53 (d, J = 8.1 Hz, 1 H). ¹³C NMR (50 MHz, CD3COCD3): δ = 113.7, 128.8, 129.2, 131.8, 140.5, 159.5, 161.7, 162.0.

  • 29b Brown DJ. Cowden WB. Strekowski L. Aust. J. Chem.  1982,  35:  1209-1214  
  • Compound 10: pale yellow powder; mp 67 ˚C. The spectral data were found identical to those previously described. See:
  • 30a Constable EC. Sousa LR. J. Organomet. Chem.  1992,  427:  125 
  • 30b Bayh O. Awad H. Mongin F. Hoarau C. Trécourt F. Quéguiner G. Marsais F. Blanco F. Abarca B. Ballesteros R. Tetrahedron  2005,  61:  4779 
  • 31 N-Boc pyrrole has previously been metalated using LiTMP in THF at -75 ˚C. See: Hasan I. Marinelli ER. Lin L.-CC. Fowler FW. Levy AB. J. Org. Chem.  1981,  46:  157 
  • 32 Compound 12: yellow oil. The spectral data were found identical to those previously described: Semmelback MF. Chlenov A. Douglas M. J. Am. Chem. Soc.  2005,  127:  7759 
  • 33 Concerning the direct lithiation of anisole, see: Shirley DA. Johnson JR. Hendrix JP. J. Organomet. Chem.  1968,  11:  209 
  • 34 Compound 14: colorless oil. The spectral data were found identical to those previously described: Mongin F. Mojovic L. Guillamet B. Trécourt F. Quéguiner G. J. Org. Chem.  2002,  67:  8991 
  • For the deprotonation of 2-fluoropyridine using a lithium amide, see:
  • 36a Gribble GW. Saulnier MG. Heterocycles  1993,  35:  151 
  • 36b Estel L. Marsais F. Quéguiner G.
    J. Org. Chem.  1988,  53:  2740 
  • 37 See, for example: Riguet E. Alami M. Cahiez G. Tetrahedron Lett.  1997,  38:  4397 
  • For palladium-catalyzed cross-couplings of arylzinc compounds with aryl bromides, see for example:
  • 38a Amatore C. Jutand A. Negri S. Fauvarque J.-F. J. Organomet. Chem.  1990,  390:  389 
  • 38b Bumagin NA. Sokolova AF. Beletskaya IP. Russ. Chem. Bull.  1993,  42:  1926 
  • 38c Borner RC. Jackson RFW. J. Chem. Soc., Chem. Commun.  1994,  845 
  • 38d Goldfinger MB. Crawford KB. Swager TM. J. Am. Chem. Soc.  1997,  119:  4578 
  • 38e Hargreaves SL. Pilkington BL. Russell SE. Worthington PA. Tetrahedron Lett.  2000,  41:  1653 
  • 38f Loren JC. Siegel JS. Angew. Chem. Int. Ed.  2001,  40:  754 
  • 38g Alami M. Peyrat J.-F. Belachmi L. Brion J.-D. Eur. J. Org. Chem.  2001,  4207 
  • 38h Karig G. Thasana N. Gallagher T. Synlett  2002,  808 
  • 38i Balle T. Andersen K. Vedsø P. Synthesis  2002,  1509 
  • 38j Kondolff I. Doucet H. Santelli M. Organometallics  2006,  25:  5219 
  • 38k Akao A. Tsuritani T. Kii S. Sato K. Nonoyama N. Mase T. Yasuda N. Synlett  2007,  31 
  • 39 Legault CY. Garcia Y. Merlic CA. Houk KN. J. Am. Chem. Soc.  2007,  129:  12664 
  • 40 Compound 9b: beige powder; mp 104 ˚C. The spectral data were found identical to those previously described: Takahashi K. Suzuki T. Akiyama K. Ikegami Y. Fukazawa Y. J. Am. Chem. Soc.  1991,  113:  4576 
  • 41 Compound 9c: yellow powder; mp 135 ˚C. The spectral data were found identical to those previously described: Li J.-H. Zhu Q.-M. Xie Y.-X. Tetrahedron  2006,  62:  10888 
  • 42 Compound 9d: white powder; mp 134 ˚C. The spectral data were found identical to those previously described: Sieber F. Wentworth P. Janda KD. J. Comb. Chem.  1999,  1:  540 
  • 43 Compound 9e: white solid; mp 88 ˚C. The spectral data were found identical to those previously described: Denmark SE. Baird JD. Org. Lett.  2006,  8:  793 
  • 44 Bonnet V. Mongin F. Trécourt F. Quéguiner G. Knochel P. Tetrahedron Lett.  2001,  42:  5717 
  • 45 Amatore C. Carré E. Jutand A. Tanaka H. Quinghua R. Torii S. Chem. Eur. J.  1996,  2:  957 
  • 46 Isobe M. Kondo S. Nagasawa N. Goto T. Chem. Lett.  1977,  679 
15

For discussions on the advantages of palladium over nickel, see refs. 4c and 5b.

21

Slightly lower cross-coupling yields have been observed with higher order zincate compared with lithium triorganozincate, see ref. 9.

22

No reaction takes place in the absence of transition metal. Note that product 2a has previously been obtained by addition of 2-benzofuryllithium at the 4-position of 2-chloropyrimidine followed by rearomatization using DDQ in 38% yield, see ref. 20b.

25

Compound 4: white powder; mp 88 ˚C. The spectral data were found identical to those previously described, see. ref. 20b. ¹³C NMR (50 MHz, CDCl3): δ = 113.1, 113.1, 114.5, 146.2, 150.4, 158.1, 159.9, 161.7.

27

Compound 8a: pale yellow powder; mp 198 ˚C. The spectral data were found identical to those previously described, see ref. 20b. ¹³C NMR (50 MHz, CDCl3): δ = 114.5, 122.9, 125.2, 125.3, 126.3, 126.9, 139.8, 140.1, 141.8, 159.7, 161.9, 162.3.

28

Compound 8b: white powder; mp 126 ˚C. The physical and spectral data were found identical to those of a commercial sample (Aldrich).

35

Compound 16: beige powder; mp <50 ˚C. ¹H NMR (200 MHz, CDCl3): δ = 7.25-7.37 (m, 2 H), 7.72-7.91 (m, 2 H), 8.25 (d, J = 3.2 Hz, 1 H), 8.47-8.58 (m, 1 H), 8.72 (d, J = 4.8 Hz, 1 H). ¹³C NMR (50 MHz, CDCl3): δ = 122.1 (d, J = 4.3 Hz), 122.6, 123.2, 124.3 (d, J = 10.4 Hz), 136.8, 141.6 (d, J = 3.8 Hz), 147.7 (d, J = 15.1 Hz), 150.0, 151.4 (d, J = 6.8 Hz), 160.9 (d, J = 241 Hz). HRMS: m/z calcd for C10H7N2F [M+]: 174.0593; found: 174.0595.