Subscribe to RSS
DOI: 10.1055/s-0028-1087411
Synthesis of Pyrrolo[1,2-b]isoquinolines through Mesityllithium-Mediated Intramolecular Carbolithiation
Publication History
Publication Date:
26 November 2008 (online)
Abstract
Mesityllithium has proven to be an effective iodine-lithium exchange reagent. Thus, carbolithiation reactions on 2-alkenyl-substituted N-(o-iodobenzyl)pyrroles have been accomplished avoiding side reactions to afford pyrroloisoquinolines in high yields (80-92%), improving the results obtained with t-BuLi. The carbolithiation reaction requires the use of electron-deficient alkenes. Mesityllithium has also been studied as an alternative to t-BuLi in Parham cyclization with other internal electrophiles (aldehyde, ketone, ester, amide), proving to be more selective and efficient than t-BuLi.
Key words
organolithium - carbanions - carbolithiation - metalation - heterocycles
-
1a
Wakefield BJ. The Chemistry of Organolithium Compounds 2nd ed.: Pergamon; New York: 1990. -
1b
Rappoport Z.Marek I. The Chemistry of Organolithium Compounds Vol. 1:Rappoport Z. Wiley; Chichester: 2004. -
1c
Gribble GW. In Science of Synthesis Vol. 8a:Majewski M.Snieckus V. Thieme; Stuttgart: 2006. p.357-426 - 2
Bailey WF.Ovaska TV. In Advances in Detailed Reaction Mechanisms: Mechanisms of Importance in Synthesis Vol. 3:Coxon JM. JAI Press; Greenwich: 1994. p.251-273 - For reviews, see
-
3a
Parham WE.Bradsher CK. Acc. Chem. Res. 1982, 15: 300 -
3b
Gray M.Tinkl M.Snieckus V. In Comprehensive Organometallic Chemistry II Vol. 11:Abel EW.Stone FGA.Wilkinson G. Pergamon; Exeter: 1995. p.66-92 -
3c
Ardeo A.Collado MI.Osante I.Ruiz J.Sotomayor N.Lete E. In Targets in Heterocyclic Systems Vol. 5:Atanassi O.Spinelli D. Italian Society of Chemistry; Rome: 2001. p.393-418 -
3d
Sotomayor N.Lete E. Curr. Org. Chem. 2003, 7: 275 -
3e
Nájera C.Sansano JM.Yus M. Tetrahedron 2003, 59: 9255 ; see also ref. 1 - 4
Parham WE.Jones LD.Sayed YA. J. Org. Chem. 1975, 40: 2394 ; see also ref. 3a - For representative examples of our synthetic work in this area, see:
-
5a
Lete E.Egiarte A.Sotomayor N.Vicente T.Villa MJ. Synlett 1993, 41 -
5b
Collado MI.Manteca I.Sotomayor N.Villa MJ.Lete E. J. Org. Chem. 1997, 62: 2080 -
5c
Osante I.Collado MI.Lete E.Sotomayor N. Eur. J. Org. Chem. 2001, 1267 -
5d
González-Temprano I.Sotomayor N.Lete E. Synlett 2002, 593 -
5e
Osante I.Lete E.Sotomayor N. Tetrahedron Lett. 2004, 45: 1253 -
5f
González-Temprano I.Osante I.Lete E.Sotomayor N. J. Org. Chem. 2004, 69: 3875 -
5g
Osante I.Sotomayor N.Lete E. Lett. Org. Chem. 2004, 1: 148 -
5h
Abdullah MN.Arrassate S.Lete E.Sotomayor N. Tetrahedron 2007, 64: 1329 - For reviews, see:
-
6a
Marek I. J. Chem. Soc., Perkin Trans. 1 1999, 535 -
6b
Mealy MJ.Bailey WF. J. Organomet. Chem. 2002, 646: 59 -
6c
Clayden J. Organolithiums: Selectivity for Synthesis Pergamon; New York: 2002. p.282-335 -
6d
Normant JF. Top. Organomet. Chem. 2003, 287 -
6e
Fañanás FJ.Sanz R. In The Chemistry of Organolithium Compounds Vol. 2:Rappoport Z.Marek I. Wiley; Chichester: 2006. Chap. 4. p.295-379 ; see also refs. 1, 2e, and 3 - For some representative examples, see:
-
7a
Chamberlin AR.Bloom SH.Cervini LA.Fotsch CH. J. Am. Chem. Soc. 1988, 110: 4788 -
7b
Funk RL.Bolton GL.Brummond KM.Ellestad KE.Stallman JB. J. Am. Chem. Soc. 1993, 115: 7023 -
7c
Bailey WF.Jiang X.-L.McLeod CE. J. Org. Chem. 1995, 60: 7791 -
7d
Krief A.Kenda B.Remacle B. Tetrahedron 1996, 52: 7435 -
7e
Coldham I.Hufton R.Price KN.Rathmell RE.Snowdem DJ.Vennall GP. Synthesis 2001, 1523 -
7f
Deng K.Bensari A.Cohen T. J. Am. Chem. Soc. 2002, 124: 12106 -
7g
Sanz R.Ignacio JM.Rodríguez MA.Fañanás FJ.Barluenga J. Chem. Eur. J. 2007, 13: 4998 -
7h The procedure has also
been extended to the corresponding alkyne derivatives. See, for
instance:
Wu G.Cederbaum FE.Negishi E. Tetrahedron Lett. 1990, 31: 493 -
8a
Ross GA.Koppang MD.Bartak DE.Woolsey NF. J. Am. Chem. Soc. 1985, 107: 6742 -
8b
Harrowven DC. Tetrahedron Lett. 1992, 33: 2879 -
8c
Bailey WF.Daskapan T.Rampalli S. J. Org. Chem. 2003, 68: 1334 - For some representative examples on indoles, see:
-
9a
Barluenga J.Sanz R.Granados A.Fañanás FJ. J. Am. Chem. Soc. 1998, 120: 4865 - On indolines, see:
-
9b
Bailey WF.Jiang X.-L. J. Org. Chem. 1996, 61: 2596 -
9c
Zhang D.Liebskind L. J. Org. Chem. 1996, 61: 2594 - On azaindolines, see:
-
9d
Bailey WF.Salgaonkar PD.Brubaker JD.Sharma V. Org. Lett. 2008, 10: 1071 -
10a
Bailey WF.Mealy MJ.Wiberg KB. Org. Lett. 2002, 4: 791 -
10b
Fresigné C.Girard A.-L.Durandetti M.Maddaluno J. Angew. Chem. Int. Ed. 2008, 41: 891 -
10c
Fresigné C.Girard A.-L.Durandetti M.Maddaluno J. Chem. Eur. J. 2008, 14: 5159 -
11a
Comins DL.Zhang Y.-M. J. Am. Chem. Soc. 1996, 118: 12248 -
11b
Nishiyama H.Sakata N.Sugimoto H.Motoyama Y.Wakita H.Nagase H. Synlett 1998, 930 -
12a
Bailey WF.Mealy MJ. J. Am. Chem. Soc. 2000, 122: 6787 -
12b
Sanz G.Groth UM. J. Am. Chem. Soc. 2000, 122: 6789 -
12c
Barluenga J.Fañanás FJ.Sanz R.Marcos C. Org. Lett. 2002, 4: 2225 -
12d
Mealy MJ.Luderer MR.Bailey WF.Sommer MB. J. Org. Chem. 2004, 69: 6042 -
12e
Barluenga J.Fañanás FJ.Sanz R.Marcos C. Chem. Eur. J. 2005, 11: 5397 -
12f
Groth U.Koettgen P.Langenbach P.Lindenmaier A.Schuetz T.Wiegand M. Synlett 2008, 1301 - 13
Pedrosa R.Andrés C.Iglesias JM.Pérez-Encabo A. J. Am. Chem. Soc. 2001, 123: 1817 -
14a
Ruiz J.Sotomayor N.Lete E. Org. Lett. 2003, 5: 1115 -
14b
Ruiz J.Ardeo A.Ignacio R.Sotomayor N.Lete E. Tetrahedron 2005, 61: 3311 -
14c
Ruiz J.Sotomayor N.Lete E. Tetrahedron 2006, 62: 6182 - 15
Mhaske SB. Synlett 2005, 184 -
16a
Beck AK.Hoekstra MS.Seebach D. Tetrahedron Lett. 1977, 18: 1187 -
16b
Yoshifuji M.Nakamura T.Inamoto N.Yamamoto Y. Tetrahedron Lett. 1987, 28: 6325 -
16c
Yamamoto Y.Maeda K.Tomimoto K.Mase T. Synlett 2002, 561 -
17a
Comins DL.Huang S.McArdale CL.Ingalls CL. Org. Lett. 2001, 3: 469 -
17b
Comins DL.Nolan JM. Org. Lett. 2001, 3: 4255 -
17c
Mhaske SB.Argade NP. J. Org. Chem. 2004, 69: 4563 -
17d
Naka H.Akagi Y.Yamada K.Imahori T.Kasahara T.Kondo Y. Eur. J. Org. Chem. 2007, 4635 -
17e
Comins DL.Odachi PW. Tetrahedron Lett. 2008, 49: 569 - 18
Kondo Y.Asai M.Miura T.Uchiyama M.Sakamoto T. Org. Lett. 2001, 3: 13 - For representative examples, see:
-
22a
Paleo MR.Castedo L.Domínguez D. J. Org. Chem. 1993, 58: 2763 -
22b
Gould SJ.Melville CR.Cone MC.Chen J.Carney JR. J. Org. Chem. 1997, 62: 320 -
22c
Moreau A.Lorion M.Couture A.Deniau E.Grandclaudon P. J. Org. Chem. 2006, 71: 3303 -
23a
Aidhen IS.Narasimham NS. Tetrahedron Lett. 1991, 32: 2171 -
23b
Kihara M.Kashimoto M.Kobayashi Y. Tetrahedron 1992, 48: 67
References and Notes
Mesityllithium-Mediated
Carbolithiation Reactions of
N
-(
o
-Iodobenzyl)pyrroles 3b,c: Synthesis of Pyrrolo[1,2-
b
]isoquinolines - Typical
Procedure for the Synthesis of Benzyl 2-(7,8-Dimethoxy-5,10-dihydropyrrolo[1,2-
b
]isoquinolin-10-yl)acetate
(4b)
To a solution of mesityl bromide (0.1 mL, 0.65
mmol) in dry THF (5 mL), t-BuLi (1.2
mL of a 1.1 M solution in hexane, 1.3 mmol) was added at -78 ˚C,
and the reaction mixture was stirred at -20 ˚C
for 1 h. N-(o-Iodobenzyl)
pyrroles 3b (126 mg, 0.32 mmol) in dry
THF (5 mL) was added at -105 ˚C, and the resulting
mixture was stirred at this temperature for 5 min. The reaction
was quenched by the addition of sat. NH4Cl (5 mL). Then,
Et2O (10 mL) was added, the organic layer was separated,
and the aqueous phase was extracted with CH2Cl2 (3 × 10
mL). The combined organic extracts were dried (Na2SO4)
and concentrated in vacuo. Flash column chromatography (silica gel,
60% hexane-EtOAc) afforded 4b as
a colorless oil (113 mg, 92%). IR (CHCl3): 1734
cm-¹. ¹H NMR (300
MHz, CDCl3): δ = 2.75 (d, J = 7.1 Hz,
2 H), 3.81 (s, 3 H), 3.88 (s, 3 H), 4.61 (t, J = 7.1
Hz, 1 H), 4.58 (s, 1 H), 4.61 (s, 1 H), 4.64 (s, 2 H), 6.01 (s,
1 H), 6.18 (t, J = 2.8
Hz, 1 H), 6.70 (s, 2 H), 6.82 (s, 1 H), 7.26-7.35 (m,
5 H). ¹³C NMR (75.47 MHz, CDCl3): δ = 35.3,
43.6, 47.1, 55.9, 66.2, 103.9, 108.2, 109.0, 110.7, 118.4, 124.1, 128.1,
128.4, 129.9, 135.6, 147.6, 148.1, 171.3. MS (EI):
m/z (%) = 378(6) [M+ + 1],
377(21) [M+], 287(17), 286(83), 242(7),
229(16), 228(100), 212(15), 184(10), 91(16). HRMS: m/z calcd
for C23H23NO4: 377.1627; found: 377.1638.
N-Benzylpyrroles 2b-f were prepared by alkylation of the corresponding 2-acylpyrrole 5b-f with bromide 1 under standard conditions (KOH, DMSO) as described in Scheme [¹] for 2a.
21In fact, when the reaction described
in Table
[³]
, entry
6
(t-BuLi, 2 equiv, -90 ˚C,
5 min) was quenched with MeOD, incorporation of deuterium into the
acetyl group could be observed by GC-MS.