Synthesis 2009(1): 1-32  
DOI: 10.1055/s-0028-1087490
REVIEW
© Georg Thieme Verlag Stuttgart ˙ New York

Enantioselective Preparation of β²-Amino Acid Derivatives for β-Peptide Synthesis

Dieter Seebach*a, Albert K. Becka, Stefania Caponea, Gildas Deniaua, Uroš Grošelja, Engelbert Zassb
a Laboratorium für Organische Chemie, Departement für Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
Fax: +41(44)6321144; e-Mail: seebach@org.chem.ethz.ch;
b Informationszentrum Chemie Biologie Pharmazie, Departement für Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
Weitere Informationen

Publikationsverlauf

Received 12 November 2008
Publikationsdatum:
22. Dezember 2008 (online)

Abstract

β-Amino acids with a single side chain in the α-position (β²-amino acids or H-β²hXaa(PG)-OH; i.e., homo-amino acids with proteinogenic side chains) have turned out to be important components in β-peptides. They contribute to unique secondary structures, they are required for mimicking the structure and the activity of β-turn-forming α-peptides, and they can be used for protecting α-peptides against attack by aminopeptidases. In contrast to β³-homo-amino acids, the β²-isomers cannot be obtained simply by enantiospecific homologation of the (natural) α-amino acids, but have to be prepared by enantioselective reactions or sequences of transformations, which are presented herein. The various preparative methods are ordered according to the bond at the stereogenic center, which is formed in the stereoselective step, with the four strategic bonds being the C(2)-C(3) backbone bond, the C(2)-side-chain bond, the C(2)-H bond, and the C(1)-C(2) bond between the carboxylate and the α-carbon. In the most frequently employed methods, a chiral auxiliary group is attached at the carboxyl C(1) atom or at the nitrogen in the 3-position, but there are also a number of enantioselective catalytic processes, including the hydrogenation of suitable acrylates. The alternative of stereoselective synthesis, namely resolution of racemic mixtures (for instance by biocatalysis), is also discussed. A critical comparison of the various methods and strategies is presented. For the peptide chemist, a list is included with the Cbz-, Boc-, and Fmoc-protected β²-amino acid building blocks, ready for peptide coupling. In addition, the search strategy for nonracemic β²-amino acids and their precursors from the databases is described in detail.

1 Introduction

2 Why β²-Amino Acids?

3 Literature Search

4 Retrosynthetic Analysis

5 β²-Amino Acids by Formation of the C(2)-C(3) Bond

5.1 Is There a Stereospecific Route from α-Amino Acids?

5.2 Chiral Auxiliaries and Catalysts for C(2)-C(3) Bond ­Formation

6 β²-Amino Acids by Formation of the C(2)-R Bond

6.1 α-Alkylations of Chiral Enolates Derived from β-Aminopropanoic Acid

6.2 C(2)-R Bond Formation by Nucleophilic Addition and Substitution

7 β²-Amino Acids by Stereoselective Formation of the C(2)-H Bond

7.1 Protonation of Enols or Enolates Derived from 3-Aminopropanoic Acid

7.2 Enantioselective Hydrogenation of Acrylates and Nitro­olefins with Formation of β²-Amino Acid Derivatives

8 Preparation of β²-Amino Acids with Formation of the ­Strategic C(1)-C(2) Bond

9 β²-Amino Acids by Resolution?

10 Detailed Search Strategy

11 Conclusions and a Table with β²-Amino Acid Building Blocks for Peptide Synthesis

    References

  • 1 Seebach D. Overhand M. Kühnle FNM. Martinoni B. Helv. Chim. Acta  1996,  79:  913 
  • General review articles on β-peptides:
  • 2a β-Peptides: A surprise at every turn: Seebach D. Matthews JL. Chem. Commun.  1997,  2015 
  • 2b β-Peptides: From Structure to Function: Cheng RP. Gellman SH. DeGrado WF. Chem. Rev.  2001,  101:  3219 
  • 2c Seebach D. Homologs of Amino Acids and Explorations into the Worlds of β- and γ-Peptides, In Chemistry of Crop Protection Progress and Prospects in Science and Regulation   Voss G. Ramos G. Wiley-VCH; Weinheim: 2003.  p.17-29  
  • 2d The World of β- and γ-Peptides Comprised of Homologated Proteinogenic Amino Acids and Other Components: Seebach D. Beck AK. Bierbaum DJ. Chem. Biodiversity  2004,  1:  1111 
  • 2e Seebach D. Beck AK. Bierbaum DJ. Die Welt der β- und γ-Peptide aus homologisierten proteinogenen Aminosäuren und anderen Bausteinen   VHCA: Zürich: 2004. 
  • 2f Gelman MA. Gellman SH. Using Constrained β-Amino Acid Residues to Control β-Peptide Shape and Function, In Enantioselective Synthesis of β-Amino Acids   2nd ed.:  Juaristi E. Soloshonok VA. John Wiley & Sons; Hoboken NJ: 2005.  Chap. 22. p.527-591  
  • Review articles covering special aspects of β-peptide chemistry structure and biology:
  • 3a Preparation of Achiral and of Enantiopure Geminally Disubstituted β-Amino Acids for β-Peptide Synthesis: Abele S. Seebach D. Eur. J. Org. Chem.  2000,  1 
  • 3b Excursions of Synthetic Organic Chemists to the World of Oligomers and Polymers: Seebach D. Beck AK. Rueping M. Schreiber JV. Sellner H. Chimia  2001,  55:  98 
  • 3c From the Biopolymer PHB to Biological Investigations of Unnatural β- and γ-Peptides: Seebach D. Albert M. Arvidsson PI. Rueping M. Schreiber JV. Chimia  2001,  55:  345 
  • 3d From Synthetic Methods to γ-Peptides - From Chemistry to Biology: Seebach D. Beck AK. Brenner M. Gaul C. Heckel A. Chimia  2001,  55:  831 
  • 3e A Field Guide to Foldamers: Hill DJ. Mio MJ. Prince RB. Hughes TS. Moore JS. Chem. Rev.  2001,  101:  3893 
  • 3f Matthews JL. Synthesis of Peptides Based on β-Amino Acids, In Synthesis of Peptides and Peptidomimetics, In Houben-Weyl   Vol. E22c:  Felix A. Moroder L. Toniolo C. Georg Thieme Verlag; Stuttgart: 2003.  Chap. 10-12. p.552-569  
  • 3g Side-chain control of β-peptide secondary structures. Design principles: Martinek TA. Fülöp F. Eur. J. Biochem.  2003,  270:  3657 
  • 3h How we drifted into peptide chemistry and where we have arrived at: Seebach D. Kimmerlin T. Šebesta R. Campo MA. Beck AK. Tetrahedron  2004,  60:  7455 
  • 3i 100 years of peptide synthesis: ligation methods for peptide and protein synthesis with applications to β-peptide assemblies: Kimmerlin T. Seebach D. J. Pept. Res.  2005,  65:  229 
  • 3j Exploring the Antibacterial and Hemolytic Activity of Shorter- and Longer-Chain β-, α,β-, and γ-Peptides and of β-Peptides from β ² -3-Aza- and β ³ -2-Methylidene-amino Acids Bearing Proteinogenic Side Chains - A Survey: Arvidsson PI. Ryder NS. Weiss HM. Hook DF. Escalante J. Seebach D. Chem. Biodiversity  2005,  2:  401 
  • 3k β-Peptides as inhibitors of protein-protein interactions: Kritzer JA. Stephens OM. Guarracino DA. Reznik SK. Schepartz A. Bioorg. Med. Chem.  2005,  13:  11 
  • 3l Helices and Other Secondary Structures of β- and γ-Peptides: Seebach D. Hook DF. Glättli A. Biopolymers  2006,  84:  23 
  • 3m Bacterial β-peptidyl aminopeptidases: on the hydrolytic degradation of β-peptides: Geueke B. Kohler H.-PE. Appl. Microbiol. Biotechnol.  2007,  74:  1197 
  • 3n β-Peptidic Peptidomimetics: Seebach D. Gardiner J. Acc. Chem. Res.  2008,  41:  1366 
  • 3o Foldamers with Heterogeneous Backbones: Horne WS. Gellman SH. Acc. Chem. Res.  2008,  41:  1399 
  • 3p Interplay among side chain sequence backbone composition and residue rigidification in polypeptide folding and assembly: Horne WS. Price JL. Gellman SH. Proc. Natl. Acad. Sci. U.S.A.  2008,  105:  9151 
  • 3q New Open-Chain and Cyclic Tetrapeptides Consisting of α-, β ² - and β ³ -Amino-Acid Residues as Somastotatin Mimics - A Survey: Seebach D. Dubost E. Mathada RI. Jaun B. Limbach M. Löweneck M. Flögel O. Gardiner J. Capone S. Beck AK. Helv. Chim. Acta  2008,  91:  1736 
  • Review articles on β²-peptides:
  • 4a β² -Amino Acids - Syntheses, Occurrence in Natural Products and Components of β-Peptides: Lelais G. Seebach D. Biopolymers  2004,  76:  206 
  • 4b Campo MA. Escalante J. Šebesta R. β-Amino acids with proteinogenic side chains and corresponding peptides: synthesis secondary structure and biological activity, In Enantioselective Synthesis of β-Amino Acids   Juaristi E. Soloshonok VA. John Wiley & Sons; Hoboken NJ: 2005.  Chap. 23. p.593-618  
  • Books and review articles on β-amino acids:
  • 5a Enantioselective Synthesis of β-Amino Acids   Juaristi E. John Wiley & Sons; New York: 1997. 
  • 5b Enantioselective Synthesis of β-Amino Acids   2nd ed.:  Juaristi E. Soloshonok VA. John Wiley & Sons; Hoboken NJ: 2005. 
  • 5c Synthesis of fluorinated amino acids: Qiu X.-L. Meng W.-D. Qing F.-L. Tetrahedron  2004,  60:  6711 
  • 5d Biocatalysis as a profound tool in the preparation of highly enantiopure β-amino acids: Liljeblad A. Kanerva LT. Tetrahedron  2006,  62:  5831 
  • 5e Asymmetric synthesis of β ² -amino acids: 2-substituted-3-aminopropanoic acids from N-acryloyl SuperQuat derivatives: Beddow JE. Davies SG. Ling KB. Roberts PM. Russell AJ. Smith AD. Thomson JE. Org. Biol. Chem.  2007,  5:  2812 
  • 7a Kimmerlin T. Seebach D. Helv. Chim. Acta  2003,  86:  2098 
  • 7b Seebach D. Mathad RI. Kimmerlin T. Mahajan YR. Bindschädler P. Rueping M. Jaun B. Hilty C. Etezady-Esfarjani T. Helv. Chim. Acta  2005,  88:  1969 
  • 8a Abele S. Guichard G. Seebach D. Helv. Chim. Acta  1998,  81:  2141 
  • 8b Arvidsson PI. Rueping M. Seebach D. Chem. Commun.  2001,  649 
  • 9a Jacobi A. Seebach D. Helv. Chim. Acta  1999,  82:  1150 
  • 9b Rueping M. Jaun B. Seebach D. Chem. Commun.  2000,  2267 
  • 9c Vaz E. Brunsveld L. Org. Lett.  2006,  8:  4199 
  • 10 Seebach D. Abele S. Gademann K. Guichard G. Hintermann T. Jaun B. Matthews JL. Schreiber JV. Oberer L. Hommel U. Widmer H. Helv. Chim. Acta  1998,  81:  932 
  • 11 Hintermann T. Seebach D. Synlett  1997,  437 
  • 12 Seebach D. Gademann K. Schreiber JV. Matthews JL. Hintermann T. Jaun B. Oberer L. Hommel U. Widmer H. Helv. Chim. Acta  1997,  80:  2033 
  • 13 Rueping M. Schreiber JV. Lelais G. Jaun B. Seebach D. Helv. Chim. Acta  2002,  85:  2577 
  • 14 Arvidsson PI. Frackenpohl J. Seebach D. Helv. Chim. Acta  2003,  86:  1522 
  • 16a Seebach D. Abele S. Gademann K. Jaun B. Angew. Chem. Int. Ed.  1999,  38:  1595 ; Angew. Chem. 1999, 111, 1700
  • 16b Daura X. Gademann K. Schäfer H. Jaun B. Seebach D. van Gunsteren WF. J. Am. Chem. Soc.  2001,  123:  2393 
  • 16c Peter C. Rueping M. Wörner HJ. Jaun B. Seebach D. van Gunsteren WF. Chem. Eur. J.  2003,  9:  5838 
  • 16d Lelais G. Seebach D. Jaun B. Mathad RI. Flögel O. Rossi F. Campo M. Wortmann A. Helv. Chim. Acta  2006,  89:  361 
  • 16e Seebach D. Jaun B. Šebesta R. Mathad RI. Flögel O. Limbach M. Sellner H. Cottens S. Helv. Chim. Acta  2006,  89:  1801 
  • 16f Flögel O. Codée JDC. Seebach D. Seeberger PH. Angew. Chem. Int. Ed.  2006,  45:  7000 ; Angew. Chem. 2006, 118, 7157
  • 16g Mathad RI. Jaun B. Flögel O. Gardiner J. Löweneck M. Codée JDC. Seeberger PH. Seebach D. Edmonds MK. Graichen FHM. Abell AD. Helv. Chim. Acta  2007,  90:  2251 
  • 17 Seebach D. Rueping M. Arvidsson PI. Kimmerlin T. Micuch P. Noti C. Langenegger D. Hoyer D. Helv. Chim. Acta  2001,  84:  3503 
  • 18a Arvidsson PI. Frackenpohl J. Ryder NS. Liechty B. Petersen F. Zimmermann H. Camenisch GP. Woessner R. Seebach D. ChemBioChem  2001,  2:  771 
  • 18b Arvidsson PI. Ryder NS. Weiss HM. Gross G. Kretz O. Woessner R. Seebach D. ChemBioChem  2003,  4:  1345 
  • 18c Seebach D. Namoto K. Mahajan YR. Bindschädler P. Sustmann R. Kirsch M. Ryder NS. Weiss M. Sauer M. Roth C. Werner S. Beer H.-D. Munding C. Walde P. Voser M. Chem. Biodiversity  2004,  1:  65 
  • 19a Frackenpohl J. Arvidsson PI. Schreiber JV. Seebach D. ChemBioChem  2001,  2:  445 
  • 19b Hook DF. Gessier F. Noti C. Kast P. Seebach D. ChemBioChem  2004,  5:  691 
  • 19c Hook DF. Bindschädler P. Mahajan YR. Šebesta R. Kast P. Seebach D. Chem. Biodiversity  2005,  2:  591 
  • 20a Seebach D. Abele S. Schreiber JV. Martinoni B. Nussbaum AK. Schild H. Schulz H. Hennecke H. Woessner R. Bitsch F. Chimia  1998,  52:  734 
  • 20b Stoeckli M. Staab D. Schweitzer A. Gardiner J. Seebach D. J. Am. Soc. Mass Spectrom.  2007,  18:  1921 
  • 20c Weiss HM. Wirz B. Schweitzer A. Amstutz R. Rodriguez Perez MI. Andres H. Metz Y. Gardiner J. Seebach D. Chem. Biodiversity  2007,  4:  1413 
  • Only recently have we discovered three microbial enzymes which curiously can cleave only β-peptidic bond (‘β-aminopeptidases’), see reference 3m and:
  • 21a Geueke B. Heck T. Limbach M. Nesatyy V. Seebach D. Kohler H.-PE. FEBS J.  2006,  273:  5261 
  • 21b Heck T. Limbach M. Geueke B. Zacharias M. Gardiner J. Kohler H.-PE. Seebach D. Chem. Biodiversity  2006,  3:  1325 
  • 21c Heck T. Kohler H.-PE. Limbach M. Flögel O. Seebach D. Geueke B. Chem. Biodiversity  2007,  4:  2016 
  • 22 Lukaszuk A. Demaegdt H. Szemenyei E. Tóth G. Tymecka D. Misicka A. Karoyan P. Vanderheyden P. Vauquelin G. Tourwé D. J. Med. Chem.  2008,  51:  2291 
  • 23 For a recent example, see: Liu Y. Prashad M. Ciszewski L. Vargas K. Repič O. Blacklock TJ. Org. Process Res. Dev.  2008,  12:  183 
  • 24a Gademann K. Kimmerlin T. Hoyer D. Seebach D. J. Med. Chem.  2001,  44:  2460 
  • 24b Nunn C. Rueping M. Langenegger D. Schuepbach E. Kimmerlin T. Micuch P. Hurth K. Seebach D. Hoyer D. Naunyn-Schmiedeberg’s Arch. Pharmacol.  2003,  367:  95 
  • 25a Koch K. Podlech J. Synth. Commun.  2005,  35:  2789 
  • 25b Gray D. Concellón C. Gallagher T. J. Org. Chem.  2004,  69:  4849 
  • 25c Byrne CM. Church TL. Kramer JW. Coates GW. Angew. Chem. Int. Ed.  2008,  47:  3979 ; Angew. Chem. 2008, 120, 4043
  • 25d Lelais G. Micuch P. Josien-Lefebvre D. Rossi F. Seebach D. Helv. Chim. Acta  2004,  87:  3131 
  • 25e Flögel O. Casi G. Hilvert D. Seebach D. Helv. Chim. Acta  2007,  90:  1651 
  • For two recent papers on peptides consisting of such building blocks, see:
  • 26a Salaün A. Potel M. Roisnel T. Gall P. Le Grel P. J. Org. Chem.  2005,  70:  6499 
  • 26b Li X. Yang D. Chem. Commun.  2006,  3367 
  • 27 Seebach D. Angew. Chem., Int. Ed. Engl.  1979,  18:  239 ; Angew. Chem. 1979, 91, 259
  • 28 Corey EJ. Cheng XM. The Logic of Chemical Synthesis   John Wiley & Sons; New York: 1989. 
  • 29a Seebach D. Enders D. Angew. Chem. Int. Ed.  1975,  14:  15 ; Angew. Chem. 1975, 87, 1
  • 29b Seebach D. Lubosch W. Enders D. Chem. Ber.  1976,  109:  1309 
  • 29c Schlecker R. Seebach D. Helv. Chim. Acta  1977,  60:  1459 
  • 29d Schöllkopf U. Angew. Chem. Int. Ed.  1977,  16:  339 ; Angew. Chem. 1977, 89, 351
  • 29e Marti RE. Seebach D. Encyclopedia of Reagents for Organic Synthesis   Vol. 5:  John Wiley & Sons; New York: 2001.  p.3138-3140  
  • 29f Whisler MC. MacNeil S. Snieckus V. Beak P. Angew. Chem. Int. Ed.  2004,  43:  2206 ; Angew. Chem. 2004, 116, 2256
  • 30a Pollack MA. J. Am. Chem. Soc.  1943,  65:  1335 
  • 30b Lukas JH. Gerber GB. J. Labelled Compds.  1965,  1:  229 
  • 30c Hultin PG. Jones JB. Bioorg. Chem.  1992,  20:  30 
  • 31a For a recent example, see: Inaba Y. Yano S. Mikata Y. Bull. Chem. Soc. Jpn.  2008,  81:  606 
  • 31b Exception: Pirrung CM. Brown LW. J. Am. Chem. Soc.  1990,  112:  6388 
  • 32a Evans DA. Ennis MD. Le T. Mandel N. Mandel G. J. Am. Chem. Soc.  1984,  106:  1154 
  • 32b Ito Y. Katsuki T. Yamaguchi M. Tetrahedron Lett.  1984,  25:  6015 
  • 32c Evans DA. Sjogren EB. Tetrahedron Lett.  1986,  27:  4961 
  • 32d Oppolzer W. Rodriguez I. Starkemann C. Walther E. Tetrahedron Lett.  1990,  31:  5019 
  • 32e Blank S. Seebach D. Liebigs Ann. Chem.  1993,  889 
  • 33a Kang H.-Y. Pae AN. Cho YS. Koh HY. Chung BY. Chem. Commun.  1997,  821 
  • 33b Ponsinet R. Chassaing G. Lavielle S. Tetrahedron: Asymmetry  1998,  9:  865 
  • 34a Haaf K. Rüchardt C. Chem. Ber.  1990,  123:  635 ; and references cited therein
  • 34b Rüchardt C. Meier M. Haaf K. Pakusch J. Wolber EKA. Müller B. Angew. Chem. Int. Ed. Engl.  1991,  29:  893 ; Angew. Chem. 1991, 103, 907
  • 35a Baldwin JE. Adlington RM. O’Neil IA. Schofield C. Spivey AC. Sweeney JB. J. Chem. Soc., Chem. Commun.  1989,  1852 
  • 35b Baldwin JE. Spivey AC. Schofield CJ. Sweeney JB. Tetrahedron  1993,  49:  6309 
  • 35c Molander GA. Stengel PJ. Tetrahedron  1997,  53:  8887 
  • 35d Dauban P. Dodd RH. Tetrahedron Lett.  1998,  39:  5739 
  • 35e Kedrowski BL. Heathcock CH. Heterocycles  2002,  58:  601 
  • 35f Nishikawa T. Kajii S. Wada K. Ishikawa M. Isobe M. Synthesis  2002,  1658 
  • 35g Métro T.-X. Pardo DG. Cossy J. J. Org. Chem.  2007,  72:  6556 
  • 36 Seebach D. Sting AR. Hoffmann M. Angew. Chem. Int. Ed.  1997,  35:  2708 ; Angew. Chem. 1997, 108, 2881
  • 37 Mannich C. Ganz E. Ber. Dtsch. Chem. Ges. B  1922,  55:  3486 
  • 38 Ohtake H. Imada Y. Murahashi S.-I. J. Org. Chem.  1999,  64:  3790 
  • 39 D’Souza AA. Motevalli M. Robinson AJ. Wyatt PB. J. Chem. Soc., Perkin Trans. 1  1995,  1 
  • 40 Barnett CJ. Wilson TM. Evans DA. Somers TC. Tetrahedron Lett.  1997,  38:  735 
  • 41 Hintermann T. Seebach D. Helv. Chim. Acta  1998,  81:  2093 
  • 42 Coffey PE. Drauz K.-H. Roberts SM. Skidmore J. Smith JA. Chem. Commun.  2001,  2330 
  • 43 Šebesta R. Seebach D. Helv. Chim. Acta  2003,  86:  4061 
  • 44 Gessier F. Schaeffer L. Kimmerlin T. Flögel O. Seebach D. Helv. Chim. Acta  2005,  88:  2235 
  • 45 Meyer H. Beck AK. Šebesta R. Seebach D. Org. Synth.  2008,  85:  287 
  • 46 Müller-Hartwieg JCD. LaVecchia L. Meyer H. Beck AK. Seebach D. Org. Synth.  2008,  85:  295 
  • 47 Moumné R. Lavielle S. Karoyan P. J. Org. Chem.  2006,  71:  3332 
  • 48 Moumné R. Denise B. Guitot K. Rudler H. Lavielle S. Karoyan P. Eur. J. Org. Chem.  2007,  1912 
  • 49 Moumné R. Larregola M. Boutadla Y. Lavielle S. Karoyan P. Tetrahedron Lett.  2008,  49:  4704 
  • 50 Arvanitis E. Ernst H. Ludwig AA. Robinson AJ. Wyatt PB. J. Chem. Soc., Perkin Trans. 1  1998,  521 
  • 51 Seebach D. Schaeffer L. Gessier F. Bindschädler P. Jäger C. Josien D. Kopp S. Lelais G. Mahajan YR. Micuch P. Šebesta R. Schweizer BW. Helv. Chim. Acta  2003,  86:  1852 
  • 52 Bower JF. Williams JMJ. Synlett  1996,  685 
  • 53 Bower JF. Jumnah R. Williams AC. Williams JMJ. J. Chem. Soc., Perkin Trans. 1  1997,  1411 
  • 54 Kubo A. Kubota H. Takahashi M. Nunami K.-I. J. Org. Chem.  1997,  62:  5830 
  • 55 Liu W.-Q. Olszowy C. Bischoff L. Garbay C. Tetrahedron Lett.  2002,  43:  1417 
  • 56 Micuch P. Seebach D. Helv. Chim. Acta  2002,  85:  1567 
  • 57 Lelais G. Campo MA. Kopp S. Seebach D. Helv. Chim. Acta  2004,  87:  1545 
  • 58 Hu X. Nguyen KT. Verlinde CLMJ. Hol WGJ. Pei D. J. Med. Chem.  2003,  46:  3771 
  • 59a Doldouras GA. Kollonitsch J. J. Am. Chem. Soc.  1978,  100:  341 
  • 59b Shier WT. Abbas HK. Badria FA. Tetrahedron Lett.  1995,  36:  1571 
  • 60a Honda T. Ishikawa F. Chem. Commun.  1999,  1065 
  • 60b Katoh M. Inoue H. Suzuki A. Honda T. Synlett  2005,  2820 
  • 61a Spatola AF. Bettag AL. J. Org. Chem.  1981,  46:  2393 ; and references cited therein
  • 61b Jang DO. Tetrahedron Lett.  1996,  37:  5367 
  • 61c Kagoshima H. Hashimoto Y. Oguro D. Kutsuna T. Saigo K. Tetrahedron Lett.  1998,  39:  1203 
  • 61d Park L. Keum G. Kang SB. Soo Kim K. Kim Y. J. Chem. Soc., Perkin Trans. 1  2000,  4462 
  • 61e Barrero AF. Alvarez-Manzaneda EJ. Chahboun R. Meneses R. Romera JL. Synlett  2001,  485 
  • 61f Li J. Ye D. Liu H. Luo X. Jiang H. Synth. Commun.  2008,  38:  567 
  • 62a Fischli A. Chiral building blocks in enantiomer synthesis using enzymic transformations, In Modern Synthetic Methods 1980   Vol. 2:  Scheffold R. Otto Salle Verlag; Frankfurt a. M.: 1980.  p.269-350  
  • 62b Seebach D. Roggo S. Zimmermann J. Biological-Chemical Preparation of 3-Hydroxycarboxylic Acids and Their Use in EPC-Syntheses, In Stereochemistry of Organic and Bioorganic Transformations   Vol. 17:  Bartmann W. Sharpless KB. Workshop Conferences Hoechst Verlag Chemie; Weinheim: 1987.  p.85-126  
  • 63a Barrow RA. Hemscheidt T. Liang J. Paik S. Moore RE. Tius MA. J. Am. Chem. Soc.  1995,  117:  2479 
  • 63b Jin Y. Kim DH. Synlett  1998,  1189 
  • 63c Jin YH. Kim DH. Bioorg. Med. Chem. Lett.  1998,  8:  3515 
  • 63d Yokomatsu T. Minowa T. Murano T. Shibuya S. Tetrahedron  1998,  54:  9341 
  • 63e Ghosh AK. Bischoff A. Org. Lett.  2000,  2:  1573 
  • 63f Walz AJ. Miller MJ. Org. Lett.  2002,  4:  2047 
  • 63g Lee HS. Park JD. Kim DH. Bull. Korean Chem. Soc.  2003,  24:  467 
  • 63h Ghosh AK. Bischoff A. Eur. J. Org. Chem.  2004,  2131 
  • 63i Danner P. Bauer M. Phukan P. Maier ME. Eur. J. Org. Chem.  2005,  317 
  • 63j Maibaum J. Stutz S. Göschke R. Rigollier P. Yamaguchi Y. Cumin F. Rahuel J. Baum H.-P. Cohen N.-C. Schnell CR. Fuhrer W. Gruetter MG. Schilling W. Wood JM. J. Med. Chem.  2007,  50:  4832 
  • 63k Ham W.-H. Oh C.-Y. Lee Y.-S. Jeong J.-H. J. Org. Chem.  2000,  65:  8372 
  • 65 Brenner M. La Vecchia L. Leutert T. Seebach D. Org. Synth.  2003,  80:  57 
  • 66 Gaul C. Schweizer BW. Seiler P. Seebach D. Helv. Chim. Acta  2002,  85:  1546 
  • 67a Chi Y. Gellman SH. J. Am. Chem. Soc.  2006,  128:  6804 
  • 67b Chi Y. English EP. Pomerantz WC. Horne WS. Joyce LA. Alexander LR. Fleming WS. Hopkins EA. Gellman SH. J. Am. Chem. Soc.  2007,  129:  6050 
  • 68 The Córdova group has also studied the aminomethylation of aldehydes but have actually prepared only a single β²-amino acid derivative (Boc-β²hAla-OH): Ibrahem I. Zhao G.-L. Córdova A. Chem. Eur. J.  2007,  13:  683 
  • 69a Davies HML. Venkataramani C. Angew. Chem. Int. Ed.  2002,  41:  2197 ; Angew. Chem. 2002, 114, 2301
  • 69b Davies HML. Ni A. Chem. Commun.  2006,  3110 
  • See, for instance, the discussions in:
  • 70a Seebach D. Estermann H. Tetrahedron Lett.  1987,  28:  3103 
  • 70b Estermann H. Seebach D. Helv. Chim. Acta  1988,  71:  1824 ; and references cited therein
  • 72 Guzmán-Mejía R. Reyes-Rangel G. Juaristi E. Nat. Protoc.  2007,  2:  2759 
  • 73 Sibi MP. Deshpande PK. J. Chem. Soc., Perkin Trans. 1  2000,  1461 
  • 74 Xue C.-B. He X. Roderick J. Corbett RL. Decicco CP. J. Org. Chem.  2002,  67:  865 
  • 75 Zhang X. Ni W. van der Donk WA. J. Org. Chem.  2005,  70:  6685 
  • 76 Beddow JE. Davies SG. Smith AD. Russell AJ. Chem. Commun.  2004,  2778 
  • 77 Ponsinet R. Chassaing G. Vaissermann J. Lavielle S. Eur. J. Org. Chem.  2000,  83 
  • 78 WoŸniak D. Szymańska A. Oldziej S. Łankiewicz L. Grzonka Z. Pol. J. Chem.  2006,  80:  265 
  • 79a Seki M. Furutani T. Miyake T. Yamanaka T. Ohmizu H. Tetrahedron: Asymmetry  1996,  7:  1241 
  • 79b Seki M. Miyake T. Yamanaka T. Ohmizu H. Synlett  1996,  455 
  • 80 Tessier A. Lahmar N. Pytkowicz J. Brigaud T. J. Org. Chem.  2008,  73:  3970 
  • 81 Nagula G. Huber VJ. Lum C. Goodman BA. Org. Lett.  2000,  2:  3527 
  • 82a Gutiérrez-García VM. López-Ruiz H. Reyes-Rangel G. Juaristi E. Tetrahedron  2001,  57:  6487 
  • 82b Gutiérrez-García VM. Reyes-Rangel G. Muñoz-Muñiz O. Juaristi E. J. Braz. Chem. Soc.  2001,  12:  652 
  • 82c Gutiérrez-García VM. Reyes-Rangel G. Muñoz-Muñiz O. Juaristi E. Helv. Chim. Acta  2002,  85:  4189 
  • 82d Avila-Ortiz CG. Reyes-Rangel G. Juaristi E. Tetrahedron  2005,  61:  8372 
  • 83 Stončius A. Nahrwold M. Sewald N. Synthesis  2005,  1829 
  • 84 Arvanitis E. Motevalli M. Wyatt PB. Tetrahedron Lett.  1996,  37:  4277 
  • 85a Stork G. Pure Appl. Chem.  1968,  17:  383 
  • 85b Stork G. Jung ME. J. Am. Chem. Soc.  1974,  96:  3682 
  • Previously phenylethylamine was added directly to α,β-unsaturated esters with poor stereoselectivities; the diastereoisomers formed were separated, so that eventually both enantiomeric products were isolated. For examples, see reference 70 and:
  • 86a Furukawa M. Okawara T. Terawaki Y. Chem. Pharm. Bull.  1977,  25:  1319 
  • 86b Kinas R. Pankiewicz K. Stec WJ. Farmer PB. Foster AB. Jarman M. J. Org. Chem.  1977,  42:  1650 
  • 87 Masamune S. Choy W. Petersen JS. Sita LR. Angew. Chem. Int. Ed.  1985,  24:  1 ; Angew. Chem. 1985, 97, 1
  • 88a Meyers AI. General Heterocyclic Chemistry Series: Heterocycles in Organic Synthesis   Wiley-Interscience; New York: 1974. 
  • 88b Rottmann A. Bartoczek M. Liebscher J. Synthesis  1997,  313 
  • 89a Konopelski JP. Chu KS. Negrete GR. J. Org. Chem.  1991,  56:  1355 
  • 89b Lakner FJ. Chu KS. Negrete GR. Konopelski JP. Org. Synth.  1996,  73:  201 
  • 89c Kinkel JN. Gysel U. Blaser D. Seebach D. Helv. Chim. Acta  1991,  74:  1622 
  • 89d Seebach D. Boog A. Schweizer WB. Eur. J. Org. Chem.  1999,  335 
  • 89e Juaristi E. Quintana D. Tetrahedron: Asymmetry  1992,  3:  723 
  • 89f Juaristi E. Quintana D. Balderas M. García-Peréz E. Tetrahedron: Asymmetry  1996,  7:  2233 
  • 89g Juaristi E. Balderas M. López-Ruiz H. Jiménez-Pérez VM. Kaiser-Carril ML. Ramírez-Quirós Y. Tetrahedron: Asymmetry  1999,  10:  3493 
  • 89h Muñoz-Muñiz O. Juaristi E. Tetrahedron  2003,  59:  4223 
  • 90 Agami C. Cheramy S. Dechoux L. Synlett  1999,  1838 
  • 91 Belokon YN. Mociskite S. Maleev VI. Orlova SA. Ikonnikov NS. Shamuratov EB. Batsanov AS. Struchkov YT. Mendeleev Commun.  1992,  89 
  • 92 Sewald N. Wendisch V. Tetrahedron: Asymmetry  1998,  9:  1341 
  • 93 Alexakis A. Benhaim C. Org. Lett.  2000,  2:  2579 
  • 94 Hübner J. Liebscher J. Pätzel M. Tetrahedron  2002,  58:  10485 
  • 95a Sewald N. Angew. Chem. Int. Ed.  2003,  42:  5794 ; Angew. Chem. 2003, 115, 5972
  • 95b Rimkus A. Sewald N. Org. Lett.  2003,  5:  79 
  • 95c Rimkus A. Sewald N. Synthesis  2004,  135 
  • 96 Eilitz U. Leßmann F. Seidelmann O. Wendisch V. Tetrahedron: Asymmetry  2003,  14:  189 
  • 97 Duursma A. Minnaard AJ. Feringa BL. J. Am. Chem. Soc.  2003,  125:  3700 
  • 99 van Zijl AW. López F. Minnaard AJ. Feringa BL. J. Org. Chem.  2007,  72:  2558 
  • 100a Seebach D. Colvin EW. Lehr F. Weller T. Chimia  1979,  33:  1 
  • 100b Ono N. The Nitro Group in Organic Synthesis   John Wiley & Sons; New York: 2001. 
  • 101a Basavaiah D. Rao AJ. Satyanarayana T. Chem. Rev.  2003,  103:  811 
  • 101b Lee KY. Gowrisankar S. Kim JN. Bull. Korean Chem. Soc.  2005,  26:  1481 
  • 101c Masson G. Housseman C. Zhu J. Angew. Chem. Int. Ed.  2007,  46:  4614 ; Angew. Chem. 2007, 119, 4698
  • 102 Lee H.-S. Park J.-S. Kim BM. Gellman SH. J. Org. Chem.  2003,  68:  1575 
  • 103a Perlmutter P. Tabone M. Tetrahedron Lett.  1988,  29:  949 
  • 103b Perlmutter P. Tabone M. J. Org. Chem.  1995,  60:  6515 
  • 104 Singh SK. Singh GB. Byri VK. Satish B. Dhamjewar R. Gopalan B. Synth. Commun.  2008,  38:  456 
  • 105a Pratt LM. Beckett RP. Davies SJ. Launchbury SB. Miller A. Spavold ZM. Todd RS. Whittaker M. Bioorg. Med. Chem. Lett.  2001,  11:  2585 
  • 105b Jiang X. Prasad K. Prashad M. Slade J. Repič O. Blacklock TJ. Synlett  2006,  3179 
  • 106a Seebach D. Angew. Chem., Int. Ed. Engl.  1988,  27:  1624 ; Angew. Chem. 1988, 100, 1685
  • 106b Juaristi E. Beck AK. Hansen J. Matt T. Mukhopadhyay T. Simson M. Seebach D. Synthesis  1993,  1271 
  • 107 A special case is the Et3N-catalyzed addition of the hydroxy group of a rather complex, polymer-bound chiral molecule to the ketene derived from 2-aryl-3-phthalimidopropanoic acid; after hydrolysis, β²Phg derivatives are isolated: Akkari R. Calmés M. Di Malta D. Escale F. Martinez J. Tetrahedron: Asymmetry  2003,  14:  1223 
  • 108a Sani M. Bruché L. Chiva G. Fustero S. Piera J. Volonterio A. Zanda M. Angew. Chem. Int. Ed.  2003,  42:  2060 ; Angew. Chem. 2003, 115, 2106
  • 108b Volonterio A. Chiva G. Fustero S. Piera J. Rosello MS. Sani M. Zanda M. Tetrahedron Lett.  2003,  44:  7019 
  • 108c Fustero S. Garcia Sancho A. Chiva G. Sanz-Cervera JF. Del Pozo C. Aceña JL. J. Org. Chem.  2006,  71:  3299 
  • 108d Fustero S. Chiva G. Piera J. Volonterio A. Zanda M. González J. Ramallal AM. Chem. Eur. J.  2007,  13:  8530 
  • 109 Sibi MP. Patil K. Angew. Chem. Int. Ed.  2004,  43:  1235 ; Angew. Chem. 2004, 116, 1255
  • 110 Sibi MP. Tatamidani H. Patil K. Org. Lett.  2005,  7:  2571 
  • 111a Takaya Y. Ogasawara M. Hayashi T. Sakai M. Miyaura N. J. Am. Chem. Soc.  1998,  120:  5579 
  • 111b Navarre L. Darses S. Genet J.-P. Angew. Chem. Int. Ed.  2004,  43:  719 ; Angew. Chem. 2004, 116, 737
  • 112 Elaridi J. Thaqi A. Prosser A. Jackson WR. Robinson AJ. Tetrahedron: Asymmetry  2005,  16:  1309 
  • 113 Takagi M. Yamamoto K. Tetrahedron  1991,  47:  8869 
  • 114 Saylik D. Campi EM. Donohue AC. Jackson WR. Robinson AJ. Tetrahedron: Asymmetry  2001,  12:  657 
  • 115 Huang H. Liu X. Deng J. Qiu M. Zheng Z. Org. Lett.  2006,  8:  3359 
  • 116 Qiu L. Prashad M. Hu B. Prasad K. Repič O. Blacklock TJ. Kwong FY. Kok SHL. Lee HW. Chan ASC. Proc. Natl. Acad. Sci. U.S.A.  2007,  104:  16787 
  • 117 Deng J. Hu X.-P. Huang J.-D. Yu S.-B. Wang D.-Y. Duan Z.-C. Zheng Z. J. Org. Chem.  2008,  73:  2015 
  • 118 Tanaka T. Muto T. Maruoka H. Imajo S. Fukami H. Tomimori Y. Fukuda Y. Nakatsuka T. Bioorg. Med. Chem. Lett.  2007,  17:  3431 
  • 119 Swiderska MA. Stewart JD. Org. Lett.  2006,  8:  6131 
  • 120 Martin NJA. Cheng X. List B. J. Am. Chem. Soc.  2008,  130:  13862 
  • 121a Noyori R. Angew. Chem. Int. Ed.  2002,  41:  2008 ; Angew. Chem. 2002, 114, 2108
  • 121b Noyori R. Kitamura M. Angew. Chem. Int. Ed.  1991,  30:  34 ; Angew. Chem. 1991, 103, 34
  • 121c Züger MF. Giovannini F. Seebach D. Angew. Chem. Int. Ed.  1983,  22:  1012;  Angew. Chem. 1983, 95, 1024
  • 121d Seebach D. Renaud P. Schweizer WB. Züger MF. Brienne MJ. Helv. Chim. Acta  1984,  67:  1843 
  • 121e Seebach D. Sutter MA. Weber RH. Züger MF. Org. Synth.  1985,  63:  1 
  • 121f Ehrler J. Giovannini F. Lamatsch B. Seebach D. Chimia  1986,  40:  172 
  • 121g Seebach D. Eberle M. Synthesis  1986,  37 
  • 121h Seebach D. Herradon B. Tetrahedron Lett.  1987,  28:  3791 
  • 121i Seebach D. Roggo S. Maetzke T. Braunschweiger H. Cercus J. Krieger M. Helv. Chim. Acta  1987,  70:  1605 
  • 121j Herradon B. Seebach D. Helv. Chim. Acta  1989,  72:  690 
  • 121k Haag T. Arslan T. Seebach D. Chimia  1989,  43:  351 
  • 121l Noyori R. Ikeda T. Ohkuma T. Widhalm M. Kitamura M. Takaya H. Akutagawa S. Sayo N. Saito T. Taketomi T. Kumobayashi H. J. Am. Chem. Soc.  1989,  111:  9134 
  • 122 Mashima K. Matsumura Y. Kusano K. Kumobayashi H. Sayo N. Hori Y. Ishizaki T. Akutagawa S. Takaya H. J. Chem. Soc., Chem. Commun.  1991,  609 
  • 123 Zhang X. Mashima K. Koyano K. Sayo N. Kumobayashi H. Akutagawa S. Takaya H. J. Chem. Soc., Perkin Trans. 1  1994,  2309 
  • 124 Benincori T. Cesarotti E. Piccolo O. Sannicolò F. J. Org. Chem.  2000,  65:  2043 
  • 125 Cha JH. Pae AN. Choi KI. Cho YS. Kim WH. Han YS. Yun H.-C. Lee J. Koh HY. Lee E. Biotechnol. Lett.  2002,  24:  1695 
  • 126 Shimoda K. Kubota N. Hamada H. Hamada H. Tetrahedron Lett.  2006,  47:  1541 
  • 127 Díaz-Sánchez BR. Iglesias-Arteaga MA. Melgar-Fernández R. Juaristi E. J. Org. Chem.  2007,  72:  4822 
  • 128a Sammis GM. Jacobsen EN. J. Am. Chem. Soc.  2003,  125:  4442 
  • 128b Goodman SN. Jacobsen EN. Angew. Chem. Int. Ed.  2002,  41:  4703 ; Angew. Chem. 2002, 114, 4897
  • 129 Trost BM. Hisaindee S. Org. Lett.  2006,  8:  6003 
  • 130 Wang J. Li H. Duan W. Zu L. Wang W. Org. Lett.  2005,  7:  4713 
  • 131 Liu H. Xu J. Du D.-M. Org. Lett.  2007,  9:  4725 
  • 132 Schleich S. Helmchen G. Eur. J. Org. Chem.  1999,  2515 
  • 133a Zheng X. Day C. Gollamudi R. Chirality  1995,  7:  90 
  • 133b Chung YJ. Huck BR. Christianson LA. Stanger HE. Krauthäuser S. Powell DR. Gellman SH. J. Am. Chem. Soc.  2000,  122:  3995 
  • 134 For a reliable determination of the enantiopurity of β²-, β³- and γ-amino acids by NMR analysis of diastereoisomeric Pd complexes see: Böhm A. Seebach D. Helv. Chim. Acta  2000,  83:  3262 
  • 138a Hellmann H. Haas G. Chem. Ber.  1957,  90:  1357 
  • 138b Böhme H. Broese R. Eiden F. Chem. Ber.  1959,  92:  1258 
  • 138c Tan CYK. Wainman D. Weaver DF. Bioorg. Med. Chem.  2003,  11:  113 
  • 138d Hessler JC. J. Am. Chem. Soc.  1913,  35:  990 
  • 138e Gardner PD. Brandon RL. J. Org. Chem.  1957,  22:  1704 
  • 138f Lee J. Gauthier D. Rivero RA. J. Org. Chem.  1999,  64:  3060 
  • 138g Albarella JP. J. Org. Chem.  1977,  42:  2009 
  • 138h Wang X. Kitamura M. Maruoka K. J. Am. Chem. Soc.  2007,  129:  1038 
  • 138i Romanova NN. Budylin VA. Grishina GV. Potapov VM. Demchuk ML. Sivkova IY. Bundel YG. Chem. Heterocycl. Compd.  1986,  22:  495 
  • 138j Urbach A. Muccioli GG. Stern E. Lambert DM. Marchand-Brynaert J. Bioorg. Med. Chem. Lett.  2008,  18:  4163 
  • 138k Seebach D. Henning R. Lehr F. Gonnermann J. Tetrahedron Lett.  1977,  1161 
  • 138l Seebach D. Henning R. Mukhopadhyay T. Chem. Ber.  1982,  115:  1705 
  • 140 Salamonczyk GM. Han K. G uo Z.-w. Sih CJ. J. Org. Chem.  1996,  61:  6893 
  • 141 Solymár M. Liljeblad A. Lázár L. Fülöp F. Kanerva LT. Tetrahedron: Asymmetry  2002,  13:  1923 
  • 142 Fitz M. Forró E. Vigóczki E. Lázár L. Fülöp F. Tetrahedron: Asymmetry  2008,  19:  1114 
  • 143 Ma D.-Y. Wang D.-X. Zheng Q.-Y. Wang M.-X. Tetrahedron: Asymmetry  2006,  17:  2366 
  • 145 Ridley DD. Information Retrieval: SciFinder and SciFinder Scholar   John Wiley & Sons; Chichester UK: 2002. 
  • 151a Weisgerber DW. J. Am. Soc. Inf. Sci.  1997,  48:  349 
  • 151b Buntrock RE. J. Chem. Inf. Comput. Sci.  2001,  41:  259 
  • 151c Blackwood JE. Blower PE. Layten SW. Lillie DH. Lipkus AH. Peer JP. Qian C. Staggenborg LM. Watson CE. J. Chem. Inf. Comput. Sci.  1991,  31:  204 
  • …compare with total syntheses of complex natural products!
  • 157a Nicolaou KC. Vourloumis D. Winssinger N. Baran PS. Angew. Chem. Int. Ed.  2000,  39:  44 ; Angew. Chem. 2000, 112, 46
  • 157b Nicolaou KC. Sorensen EJ. Classics in Total Synthesis   Wiley-VCH; Weinheim: 1996. 
  • 157c Nicolaou KC. Montagnon T. Molecules That Changed the World: A Brief History of the Art and Science of Synthesis and Its Impact on Society   Wiley-VCH; Weinheim: 2008. 
  • 158 Guichard G. Abele S. Seebach D. Helv. Chim. Acta  1998,  81:  187 
  • 159 Calmés M. Escale F. Glot C. Rolland M. Martinez J. Eur. J. Org. Chem.  2000,  2459 
  • 160 Yokomatsu T. Takada K. Yasumoto A. Yuasa Y. Shibuya S. Heterocycles  2002,  56:  545 
  • 161 Sharma GVM. Reddy KL. Lakshmi PS. Ravi R. Kunwar AC. J. Org. Chem.  2006,  71:  3967 
6

Others groups studied β-peptides with ‘unnatural’ side chains or with cyclic β-amino acids as building blocks (see section 8 in an extensive review article on β-peptides²d,e and references 2b and 2f).

15

See Figure  [4] c in reference 10.

64

The sultam D is an irritant which may prevent its application on large scale or in an industrial process.

71

An amino group itself is a poor leaving group (R2N-) from an enolate. On the other hand, phthalimido or sulfonylamido groups [R(R"SO2)N-] would be expected to be good leaving groups.

98

Seebach, D.; Marti, R.; Beck, A. K.; Sprecher, H.; Pletscher, S.; Möri, M. hitherto unpublished results; ETH Zürich and Zürcher Hochschule für Angewandte Wissenschaften 2006-2008.

135

In many cases, the reported preparations ended with ‘reasonable’ precursors to properly protected β²-amino acids for peptide synthesis.

136

In one case discussed (Scheme  [¹¹] , c), an approximately 1:1 mixture of diastereoisomers was actually separated chromatographically to eventually provide the enantiomeric β²-amino acid derivatives.¹0²

137

For a large-scale production of an enantiopure drug or pesticide, on the other hand, it is not acceptable to lose 50% of material through resolution, after a multistep synthesis.

139

Lukaszuk, A.; Tourwé, D. hitherto unpublished results; Department of Organic Chemistry Vrije Universiteit Brussel, Belgium.

144

A notable exception is Gmelin, for which the version available at the host STN International has not been updated since 1997. For other databases, there may be significant differences in item coverage; for example, the Science Citation Index database version available under Web of Knowledge/Web of Science goes back to 1900, while the same database at the host STN International extends only back to 1974.

146

STN International: http://www.stn-international.de/ (last accessed 27.8.2008).

147

STN Messenger Commands: http://www.stn-international.de/training_center/rl/commands/Contents.htm (last accessed 27.8.2008).

148

STN Registry: http://www.stn-international.de/stndatabases/databases/registry.html (last accessed 27.8.2008).

149

STN CASREACT: http://www.stn-international.de/stndatabases/databases/casreact.html html (last accessed 27.8.2008).

150

So far, for any such ‘AutoFix’ problem in SciFinder Scholar referred to us, the undesired limit could be eliminated by searching in STN, but at the extra cost involved in those ‘pay-per-use’ searches at this host.

152

This reliance on CASREACT is not without problems, both regarding reaction selection policies of CAS, and particularly the time coverage of this database: specified by CAS as covering the literature back to 1840 (http://www.cas.org/expertise/cascontent/casreact.html), full coverage provided by CAS literature exception starts only in 1985 (for reactions from patents, only in 1991). Before that time, coverage is almost entirely provided by non-CAS sources: ZIC/VINITI, and INPI (French Patent Office).

153

CAplus: http://www.cas.org/expertise/cascontent/caplus/index.html (last accessed 27.8.2008).

154

Some publications appear in more than one of the categories shown.

155

SciFinder search (as of November 2008) provides more than 500 hits of commercially available enantiopure β²-amino acids, but only 16 hits for β²-amino acids, which are offered up to the 10-kg scale.

156

For instance, Phoenix Chemicals or Novasep.