RSS-Feed abonnieren
DOI: 10.1055/s-0028-1087490
Enantioselective Preparation of β²-Amino Acid Derivatives for β-Peptide Synthesis
Publikationsverlauf
Publikationsdatum:
22. Dezember 2008 (online)
Abstract
β-Amino acids with a single side chain in the α-position (β²-amino acids or H-β²hXaa(PG)-OH; i.e., homo-amino acids with proteinogenic side chains) have turned out to be important components in β-peptides. They contribute to unique secondary structures, they are required for mimicking the structure and the activity of β-turn-forming α-peptides, and they can be used for protecting α-peptides against attack by aminopeptidases. In contrast to β³-homo-amino acids, the β²-isomers cannot be obtained simply by enantiospecific homologation of the (natural) α-amino acids, but have to be prepared by enantioselective reactions or sequences of transformations, which are presented herein. The various preparative methods are ordered according to the bond at the stereogenic center, which is formed in the stereoselective step, with the four strategic bonds being the C(2)-C(3) backbone bond, the C(2)-side-chain bond, the C(2)-H bond, and the C(1)-C(2) bond between the carboxylate and the α-carbon. In the most frequently employed methods, a chiral auxiliary group is attached at the carboxyl C(1) atom or at the nitrogen in the 3-position, but there are also a number of enantioselective catalytic processes, including the hydrogenation of suitable acrylates. The alternative of stereoselective synthesis, namely resolution of racemic mixtures (for instance by biocatalysis), is also discussed. A critical comparison of the various methods and strategies is presented. For the peptide chemist, a list is included with the Cbz-, Boc-, and Fmoc-protected β²-amino acid building blocks, ready for peptide coupling. In addition, the search strategy for nonracemic β²-amino acids and their precursors from the databases is described in detail.
1 Introduction
2 Why β²-Amino Acids?
3 Literature Search
4 Retrosynthetic Analysis
5 β²-Amino Acids by Formation of the C(2)-C(3) Bond
5.1 Is There a Stereospecific Route from α-Amino Acids?
5.2 Chiral Auxiliaries and Catalysts for C(2)-C(3) Bond Formation
6 β²-Amino Acids by Formation of the C(2)-R Bond
6.1 α-Alkylations of Chiral Enolates Derived from β-Aminopropanoic Acid
6.2 C(2)-R Bond Formation by Nucleophilic Addition and Substitution
7 β²-Amino Acids by Stereoselective Formation of the C(2)-H Bond
7.1 Protonation of Enols or Enolates Derived from 3-Aminopropanoic Acid
7.2 Enantioselective Hydrogenation of Acrylates and Nitroolefins with Formation of β²-Amino Acid Derivatives
8 Preparation of β²-Amino Acids with Formation of the Strategic C(1)-C(2) Bond
9 β²-Amino Acids by Resolution?
10 Detailed Search Strategy
11 Conclusions and a Table with β²-Amino Acid Building Blocks for Peptide Synthesis
Key words
β²-amino acids - β-peptide - retrosynthetic analysis - overall enantioselective synthesis - chiral auxiliaries - enantioselective catalysis - database literature search strategies
- 1
Seebach D.Overhand M.Kühnle FNM.Martinoni B. Helv. Chim. Acta 1996, 79: 913 - General review articles on β-peptides:
-
2a
β-Peptides:
A surprise at every turn:
Seebach D.Matthews JL. Chem. Commun. 1997, 2015 -
2b
β-Peptides:
From Structure to Function:
Cheng RP.Gellman SH.DeGrado WF. Chem. Rev. 2001, 101: 3219 -
2c
Seebach D. Homologs of Amino Acids and Explorations into the Worlds of β- and γ-Peptides, In Chemistry of Crop Protection Progress and Prospects in Science and RegulationVoss G.Ramos G. Wiley-VCH; Weinheim: 2003. p.17-29 -
2d
The
World of β- and γ-Peptides Comprised of Homologated Proteinogenic
Amino Acids and Other Components:
Seebach D.Beck AK.Bierbaum DJ. Chem. Biodiversity 2004, 1: 1111 -
2e
Seebach D.Beck AK.Bierbaum DJ. Die Welt der β- und γ-Peptide aus homologisierten proteinogenen Aminosäuren und anderen Bausteinen VHCA: Zürich: 2004. -
2f
Gelman MA.Gellman SH. Using Constrained β-Amino Acid Residues to Control β-Peptide Shape and Function, In Enantioselective Synthesis of β-Amino Acids 2nd ed.:Juaristi E.Soloshonok VA. John Wiley & Sons; Hoboken NJ: 2005. Chap. 22. p.527-591 - Review articles covering special aspects of β-peptide chemistry structure and biology:
-
3a
Preparation
of Achiral and of Enantiopure Geminally Disubstituted β-Amino
Acids for β-Peptide Synthesis:
Abele S.Seebach D. Eur. J. Org. Chem. 2000, 1 -
3b
Excursions
of Synthetic Organic Chemists to the World of Oligomers and Polymers:
Seebach D.Beck AK.Rueping M.Schreiber JV.Sellner H. Chimia 2001, 55: 98 -
3c
From
the Biopolymer PHB to Biological Investigations of Unnatural β-
and γ-Peptides:
Seebach D.Albert M.Arvidsson PI.Rueping M.Schreiber JV. Chimia 2001, 55: 345 -
3d
From
Synthetic Methods to γ-Peptides - From Chemistry
to Biology:
Seebach D.Beck AK.Brenner M.Gaul C.Heckel A. Chimia 2001, 55: 831 -
3e
A
Field Guide to Foldamers:
Hill DJ.Mio MJ.Prince RB.Hughes TS.Moore JS. Chem. Rev. 2001, 101: 3893 -
3f
Matthews JL. Synthesis of Peptides Based on β-Amino Acids, In Synthesis of Peptides and Peptidomimetics, In Houben-Weyl Vol. E22c:Felix A.Moroder L.Toniolo C. Georg Thieme Verlag; Stuttgart: 2003. Chap. 10-12. p.552-569 -
3g
Side-chain
control of β-peptide secondary structures. Design principles:
Martinek TA.Fülöp F. Eur. J. Biochem. 2003, 270: 3657 -
3h
How
we drifted into peptide chemistry and where we have arrived at:
Seebach D.Kimmerlin T.Šebesta R.Campo MA.Beck AK. Tetrahedron 2004, 60: 7455 -
3i
100
years of peptide synthesis: ligation methods for peptide and protein
synthesis with applications to β-peptide assemblies:
Kimmerlin T.Seebach D. J. Pept. Res. 2005, 65: 229 -
3j
Exploring
the Antibacterial and Hemolytic Activity of Shorter- and Longer-Chain β-, α,β-,
and γ-Peptides and of β-Peptides from β
² -3-Aza- and β
³
-2-Methylidene-amino Acids Bearing Proteinogenic
Side Chains - A Survey:
Arvidsson PI.Ryder NS.Weiss HM.Hook DF.Escalante J.Seebach D. Chem. Biodiversity 2005, 2: 401 -
3k
β-Peptides
as inhibitors of protein-protein interactions:
Kritzer JA.Stephens OM.Guarracino DA.Reznik SK.Schepartz A. Bioorg. Med. Chem. 2005, 13: 11 -
3l
Helices
and Other Secondary Structures of β- and γ-Peptides:
Seebach D.Hook DF.Glättli A. Biopolymers 2006, 84: 23 -
3m
Bacterial β-peptidyl
aminopeptidases: on the hydrolytic degradation of β-peptides:
Geueke B.Kohler H.-PE. Appl. Microbiol. Biotechnol. 2007, 74: 1197 -
3n
β-Peptidic
Peptidomimetics:
Seebach D.Gardiner J. Acc. Chem. Res. 2008, 41: 1366 -
3o
Foldamers
with Heterogeneous Backbones:
Horne WS.Gellman SH. Acc. Chem. Res. 2008, 41: 1399 -
3p
Interplay
among side chain sequence backbone composition and residue rigidification
in polypeptide folding and assembly:
Horne WS.Price JL.Gellman SH. Proc. Natl. Acad. Sci. U.S.A. 2008, 105: 9151 -
3q
New
Open-Chain and Cyclic Tetrapeptides Consisting of α-, β
²
- and β
³
-Amino-Acid Residues as Somastotatin Mimics - A
Survey:
Seebach D.Dubost E.Mathada RI.Jaun B.Limbach M.Löweneck M.Flögel O.Gardiner J.Capone S.Beck AK. Helv. Chim. Acta 2008, 91: 1736 - Review articles on β²-peptides:
-
4a β²
-Amino Acids - Syntheses, Occurrence
in Natural Products and Components of β-Peptides:
Lelais G.Seebach D. Biopolymers 2004, 76: 206 -
4b
Campo MA.Escalante J.Šebesta R. β-Amino acids with proteinogenic side chains and corresponding peptides: synthesis secondary structure and biological activity, In Enantioselective Synthesis of β-Amino AcidsJuaristi E.Soloshonok VA. John Wiley & Sons; Hoboken NJ: 2005. Chap. 23. p.593-618 - Books and review articles on β-amino acids:
-
5a
Enantioselective
Synthesis of β-Amino Acids
Juaristi E. John Wiley & Sons; New York: 1997. -
5b
Enantioselective
Synthesis of β-Amino Acids
2nd
ed.:
Juaristi E.Soloshonok VA. John Wiley & Sons; Hoboken NJ: 2005. -
5c
Synthesis
of fluorinated amino acids:
Qiu X.-L.Meng W.-D.Qing F.-L. Tetrahedron 2004, 60: 6711 -
5d
Biocatalysis
as a profound tool in the preparation of highly enantiopure β-amino
acids:
Liljeblad A.Kanerva LT. Tetrahedron 2006, 62: 5831 -
5e
Asymmetric
synthesis of β
²
-amino
acids: 2-substituted-3-aminopropanoic acids from N-acryloyl SuperQuat derivatives:
Beddow JE.Davies SG.Ling KB.Roberts PM.Russell AJ.Smith AD.Thomson JE. Org. Biol. Chem. 2007, 5: 2812 -
7a
Kimmerlin T.Seebach D. Helv. Chim. Acta 2003, 86: 2098 -
7b
Seebach D.Mathad RI.Kimmerlin T.Mahajan YR.Bindschädler P.Rueping M.Jaun B.Hilty C.Etezady-Esfarjani T. Helv. Chim. Acta 2005, 88: 1969 -
8a
Abele S.Guichard G.Seebach D. Helv. Chim. Acta 1998, 81: 2141 -
8b
Arvidsson PI.Rueping M.Seebach D. Chem. Commun. 2001, 649 -
9a
Jacobi A.Seebach D. Helv. Chim. Acta 1999, 82: 1150 -
9b
Rueping M.Jaun B.Seebach D. Chem. Commun. 2000, 2267 -
9c
Vaz E.Brunsveld L. Org. Lett. 2006, 8: 4199 - 10
Seebach D.Abele S.Gademann K.Guichard G.Hintermann T.Jaun B.Matthews JL.Schreiber JV.Oberer L.Hommel U.Widmer H. Helv. Chim. Acta 1998, 81: 932 - 11
Hintermann T.Seebach D. Synlett 1997, 437 - 12
Seebach D.Gademann K.Schreiber JV.Matthews JL.Hintermann T.Jaun B.Oberer L.Hommel U.Widmer H. Helv. Chim. Acta 1997, 80: 2033 - 13
Rueping M.Schreiber JV.Lelais G.Jaun B.Seebach D. Helv. Chim. Acta 2002, 85: 2577 - 14
Arvidsson PI.Frackenpohl J.Seebach D. Helv. Chim. Acta 2003, 86: 1522 -
16a
Seebach D.Abele S.Gademann K.Jaun B. Angew. Chem. Int. Ed. 1999, 38: 1595 ; Angew. Chem. 1999, 111, 1700 -
16b
Daura X.Gademann K.Schäfer H.Jaun B.Seebach D.van Gunsteren WF. J. Am. Chem. Soc. 2001, 123: 2393 -
16c
Peter C.Rueping M.Wörner HJ.Jaun B.Seebach D.van Gunsteren WF. Chem. Eur. J. 2003, 9: 5838 -
16d
Lelais G.Seebach D.Jaun B.Mathad RI.Flögel O.Rossi F.Campo M.Wortmann A. Helv. Chim. Acta 2006, 89: 361 -
16e
Seebach D.Jaun B.Šebesta R.Mathad RI.Flögel O.Limbach M.Sellner H.Cottens S. Helv. Chim. Acta 2006, 89: 1801 -
16f
Flögel O.Codée JDC.Seebach D.Seeberger PH. Angew. Chem. Int. Ed. 2006, 45: 7000 ; Angew. Chem. 2006, 118, 7157 -
16g
Mathad RI.Jaun B.Flögel O.Gardiner J.Löweneck M.Codée JDC.Seeberger PH.Seebach D.Edmonds MK.Graichen FHM.Abell AD. Helv. Chim. Acta 2007, 90: 2251 - 17
Seebach D.Rueping M.Arvidsson PI.Kimmerlin T.Micuch P.Noti C.Langenegger D.Hoyer D. Helv. Chim. Acta 2001, 84: 3503 -
18a
Arvidsson PI.Frackenpohl J.Ryder NS.Liechty B.Petersen F.Zimmermann H.Camenisch GP.Woessner R.Seebach D. ChemBioChem 2001, 2: 771 -
18b
Arvidsson PI.Ryder NS.Weiss HM.Gross G.Kretz O.Woessner R.Seebach D. ChemBioChem 2003, 4: 1345 -
18c
Seebach D.Namoto K.Mahajan YR.Bindschädler P.Sustmann R.Kirsch M.Ryder NS.Weiss M.Sauer M.Roth C.Werner S.Beer H.-D.Munding C.Walde P.Voser M. Chem. Biodiversity 2004, 1: 65 -
19a
Frackenpohl J.Arvidsson PI.Schreiber JV.Seebach D. ChemBioChem 2001, 2: 445 -
19b
Hook DF.Gessier F.Noti C.Kast P.Seebach D. ChemBioChem 2004, 5: 691 -
19c
Hook DF.Bindschädler P.Mahajan YR.Šebesta R.Kast P.Seebach D. Chem. Biodiversity 2005, 2: 591 -
20a
Seebach D.Abele S.Schreiber JV.Martinoni B.Nussbaum AK.Schild H.Schulz H.Hennecke H.Woessner R.Bitsch F. Chimia 1998, 52: 734 -
20b
Stoeckli M.Staab D.Schweitzer A.Gardiner J.Seebach D. J. Am. Soc. Mass Spectrom. 2007, 18: 1921 -
20c
Weiss HM.Wirz B.Schweitzer A.Amstutz R.Rodriguez Perez MI.Andres H.Metz Y.Gardiner J.Seebach D. Chem. Biodiversity 2007, 4: 1413 - Only recently have we discovered three microbial enzymes which curiously can cleave only β-peptidic bond (‘β-aminopeptidases’), see reference 3m and:
-
21a
Geueke B.Heck T.Limbach M.Nesatyy V.Seebach D.Kohler H.-PE. FEBS J. 2006, 273: 5261 -
21b
Heck T.Limbach M.Geueke B.Zacharias M.Gardiner J.Kohler H.-PE.Seebach D. Chem. Biodiversity 2006, 3: 1325 -
21c
Heck T.Kohler H.-PE.Limbach M.Flögel O.Seebach D.Geueke B. Chem. Biodiversity 2007, 4: 2016 - 22
Lukaszuk A.Demaegdt H.Szemenyei E.Tóth G.Tymecka D.Misicka A.Karoyan P.Vanderheyden P.Vauquelin G.Tourwé D. J. Med. Chem. 2008, 51: 2291 - 23 For a recent example, see:
Liu Y.Prashad M.Ciszewski L.Vargas K.Repič O.Blacklock TJ. Org. Process Res. Dev. 2008, 12: 183 -
24a
Gademann K.Kimmerlin T.Hoyer D.Seebach D. J. Med. Chem. 2001, 44: 2460 -
24b
Nunn C.Rueping M.Langenegger D.Schuepbach E.Kimmerlin T.Micuch P.Hurth K.Seebach D.Hoyer D. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2003, 367: 95 -
25a
Koch K.Podlech J. Synth. Commun. 2005, 35: 2789 -
25b
Gray D.Concellón C.Gallagher T. J. Org. Chem. 2004, 69: 4849 -
25c
Byrne CM.Church TL.Kramer JW.Coates GW. Angew. Chem. Int. Ed. 2008, 47: 3979 ; Angew. Chem. 2008, 120, 4043 -
25d
Lelais G.Micuch P.Josien-Lefebvre D.Rossi F.Seebach D. Helv. Chim. Acta 2004, 87: 3131 -
25e
Flögel O.Casi G.Hilvert D.Seebach D. Helv. Chim. Acta 2007, 90: 1651 - For two recent papers on peptides consisting of such building blocks, see:
-
26a
Salaün A.Potel M.Roisnel T.Gall P.Le Grel P. J. Org. Chem. 2005, 70: 6499 -
26b
Li X.Yang D. Chem. Commun. 2006, 3367 - 27
Seebach D. Angew. Chem., Int. Ed. Engl. 1979, 18: 239 ; Angew. Chem. 1979, 91, 259 - 28
Corey EJ.Cheng XM. The Logic of Chemical Synthesis John Wiley & Sons; New York: 1989. -
29a
Seebach D.Enders D. Angew. Chem. Int. Ed. 1975, 14: 15 ; Angew. Chem. 1975, 87, 1 -
29b
Seebach D.Lubosch W.Enders D. Chem. Ber. 1976, 109: 1309 -
29c
Schlecker R.Seebach D. Helv. Chim. Acta 1977, 60: 1459 -
29d
Schöllkopf U. Angew. Chem. Int. Ed. 1977, 16: 339 ; Angew. Chem. 1977, 89, 351 -
29e
Marti RE.Seebach D. Encyclopedia of Reagents for Organic Synthesis Vol. 5: John Wiley & Sons; New York: 2001. p.3138-3140 -
29f
Whisler MC.MacNeil S.Snieckus V.Beak P. Angew. Chem. Int. Ed. 2004, 43: 2206 ; Angew. Chem. 2004, 116, 2256 -
30a
Pollack MA. J. Am. Chem. Soc. 1943, 65: 1335 -
30b
Lukas JH.Gerber GB. J. Labelled Compds. 1965, 1: 229 -
30c
Hultin PG.Jones JB. Bioorg. Chem. 1992, 20: 30 -
31a For
a recent example, see:
Inaba Y.Yano S.Mikata Y. Bull. Chem. Soc. Jpn. 2008, 81: 606 -
31b Exception:
Pirrung CM.Brown LW. J. Am. Chem. Soc. 1990, 112: 6388 -
32a
Evans DA.Ennis MD.Le T.Mandel N.Mandel G. J. Am. Chem. Soc. 1984, 106: 1154 -
32b
Ito Y.Katsuki T.Yamaguchi M. Tetrahedron Lett. 1984, 25: 6015 -
32c
Evans DA.Sjogren EB. Tetrahedron Lett. 1986, 27: 4961 -
32d
Oppolzer W.Rodriguez I.Starkemann C.Walther E. Tetrahedron Lett. 1990, 31: 5019 -
32e
Blank S.Seebach D. Liebigs Ann. Chem. 1993, 889 -
33a
Kang H.-Y.Pae AN.Cho YS.Koh HY.Chung BY. Chem. Commun. 1997, 821 -
33b
Ponsinet R.Chassaing G.Lavielle S. Tetrahedron: Asymmetry 1998, 9: 865 -
34a
Haaf K.Rüchardt C. Chem. Ber. 1990, 123: 635 ; and references cited therein -
34b
Rüchardt C.Meier M.Haaf K.Pakusch J.Wolber EKA.Müller B. Angew. Chem. Int. Ed. Engl. 1991, 29: 893 ; Angew. Chem. 1991, 103, 907 -
35a
Baldwin JE.Adlington RM.O’Neil IA.Schofield C.Spivey AC.Sweeney JB. J. Chem. Soc., Chem. Commun. 1989, 1852 -
35b
Baldwin JE.Spivey AC.Schofield CJ.Sweeney JB. Tetrahedron 1993, 49: 6309 -
35c
Molander GA.Stengel PJ. Tetrahedron 1997, 53: 8887 -
35d
Dauban P.Dodd RH. Tetrahedron Lett. 1998, 39: 5739 -
35e
Kedrowski BL.Heathcock CH. Heterocycles 2002, 58: 601 -
35f
Nishikawa T.Kajii S.Wada K.Ishikawa M.Isobe M. Synthesis 2002, 1658 -
35g
Métro T.-X.Pardo DG.Cossy J. J. Org. Chem. 2007, 72: 6556 - 36
Seebach D.Sting AR.Hoffmann M. Angew. Chem. Int. Ed. 1997, 35: 2708 ; Angew. Chem. 1997, 108, 2881 - 37
Mannich C.Ganz E. Ber. Dtsch. Chem. Ges. B 1922, 55: 3486 - 38
Ohtake H.Imada Y.Murahashi S.-I. J. Org. Chem. 1999, 64: 3790 - 39
D’Souza AA.Motevalli M.Robinson AJ.Wyatt PB. J. Chem. Soc., Perkin Trans. 1 1995, 1 - 40
Barnett CJ.Wilson TM.Evans DA.Somers TC. Tetrahedron Lett. 1997, 38: 735 - 41
Hintermann T.Seebach D. Helv. Chim. Acta 1998, 81: 2093 - 42
Coffey PE.Drauz K.-H.Roberts SM.Skidmore J.Smith JA. Chem. Commun. 2001, 2330 - 43
Šebesta R.Seebach D. Helv. Chim. Acta 2003, 86: 4061 - 44
Gessier F.Schaeffer L.Kimmerlin T.Flögel O.Seebach D. Helv. Chim. Acta 2005, 88: 2235 - 45
Meyer H.Beck AK.Šebesta R.Seebach D. Org. Synth. 2008, 85: 287 - 46
Müller-Hartwieg JCD.LaVecchia L.Meyer H.Beck AK.Seebach D. Org. Synth. 2008, 85: 295 - 47
Moumné R.Lavielle S.Karoyan P. J. Org. Chem. 2006, 71: 3332 - 48
Moumné R.Denise B.Guitot K.Rudler H.Lavielle S.Karoyan P. Eur. J. Org. Chem. 2007, 1912 - 49
Moumné R.Larregola M.Boutadla Y.Lavielle S.Karoyan P. Tetrahedron Lett. 2008, 49: 4704 - 50
Arvanitis E.Ernst H.Ludwig AA.Robinson AJ.Wyatt PB. J. Chem. Soc., Perkin Trans. 1 1998, 521 - 51
Seebach D.Schaeffer L.Gessier F.Bindschädler P.Jäger C.Josien D.Kopp S.Lelais G.Mahajan YR.Micuch P.Šebesta R.Schweizer BW. Helv. Chim. Acta 2003, 86: 1852 - 52
Bower JF.Williams JMJ. Synlett 1996, 685 - 53
Bower JF.Jumnah R.Williams AC.Williams JMJ. J. Chem. Soc., Perkin Trans. 1 1997, 1411 - 54
Kubo A.Kubota H.Takahashi M.Nunami K.-I. J. Org. Chem. 1997, 62: 5830 - 55
Liu W.-Q.Olszowy C.Bischoff L.Garbay C. Tetrahedron Lett. 2002, 43: 1417 - 56
Micuch P.Seebach D. Helv. Chim. Acta 2002, 85: 1567 - 57
Lelais G.Campo MA.Kopp S.Seebach D. Helv. Chim. Acta 2004, 87: 1545 - 58
Hu X.Nguyen KT.Verlinde CLMJ.Hol WGJ.Pei D. J. Med. Chem. 2003, 46: 3771 -
59a
Doldouras GA.Kollonitsch J. J. Am. Chem. Soc. 1978, 100: 341 -
59b
Shier WT.Abbas HK.Badria FA. Tetrahedron Lett. 1995, 36: 1571 -
60a
Honda T.Ishikawa F. Chem. Commun. 1999, 1065 -
60b
Katoh M.Inoue H.Suzuki A.Honda T. Synlett 2005, 2820 -
61a
Spatola AF.Bettag AL. J. Org. Chem. 1981, 46: 2393 ; and references cited therein -
61b
Jang DO. Tetrahedron Lett. 1996, 37: 5367 -
61c
Kagoshima H.Hashimoto Y.Oguro D.Kutsuna T.Saigo K. Tetrahedron Lett. 1998, 39: 1203 -
61d
Park L.Keum G.Kang SB.Soo Kim K.Kim Y. J. Chem. Soc., Perkin Trans. 1 2000, 4462 -
61e
Barrero AF.Alvarez-Manzaneda EJ.Chahboun R.Meneses R.Romera JL. Synlett 2001, 485 -
61f
Li J.Ye D.Liu H.Luo X.Jiang H. Synth. Commun. 2008, 38: 567 -
62a
Fischli A. Chiral building blocks in enantiomer synthesis using enzymic transformations, In Modern Synthetic Methods 1980 Vol. 2:Scheffold R. Otto Salle Verlag; Frankfurt a. M.: 1980. p.269-350 -
62b
Seebach D.Roggo S.Zimmermann J. Biological-Chemical Preparation of 3-Hydroxycarboxylic Acids and Their Use in EPC-Syntheses, In Stereochemistry of Organic and Bioorganic Transformations Vol. 17:Bartmann W.Sharpless KB. Workshop Conferences Hoechst Verlag Chemie; Weinheim: 1987. p.85-126 -
63a
Barrow RA.Hemscheidt T.Liang J.Paik S.Moore RE.Tius MA. J. Am. Chem. Soc. 1995, 117: 2479 -
63b
Jin Y.Kim DH. Synlett 1998, 1189 -
63c
Jin YH.Kim DH. Bioorg. Med. Chem. Lett. 1998, 8: 3515 -
63d
Yokomatsu T.Minowa T.Murano T.Shibuya S. Tetrahedron 1998, 54: 9341 -
63e
Ghosh AK.Bischoff A. Org. Lett. 2000, 2: 1573 -
63f
Walz AJ.Miller MJ. Org. Lett. 2002, 4: 2047 -
63g
Lee HS.Park JD.Kim DH. Bull. Korean Chem. Soc. 2003, 24: 467 -
63h
Ghosh AK.Bischoff A. Eur. J. Org. Chem. 2004, 2131 -
63i
Danner P.Bauer M.Phukan P.Maier ME. Eur. J. Org. Chem. 2005, 317 -
63j
Maibaum J.Stutz S.Göschke R.Rigollier P.Yamaguchi Y.Cumin F.Rahuel J.Baum H.-P.Cohen N.-C.Schnell CR.Fuhrer W.Gruetter MG.Schilling W.Wood JM. J. Med. Chem. 2007, 50: 4832 -
63k
Ham W.-H.Oh C.-Y.Lee Y.-S.Jeong J.-H. J. Org. Chem. 2000, 65: 8372 - 65
Brenner M.La Vecchia L.Leutert T.Seebach D. Org. Synth. 2003, 80: 57 - 66
Gaul C.Schweizer BW.Seiler P.Seebach D. Helv. Chim. Acta 2002, 85: 1546 -
67a
Chi Y.Gellman SH. J. Am. Chem. Soc. 2006, 128: 6804 -
67b
Chi Y.English EP.Pomerantz WC.Horne WS.Joyce LA.Alexander LR.Fleming WS.Hopkins EA.Gellman SH. J. Am. Chem. Soc. 2007, 129: 6050 - 68 The Córdova group has also
studied the aminomethylation of aldehydes but have actually prepared
only a single β²-amino acid derivative
(Boc-β²hAla-OH):
Ibrahem I.Zhao G.-L.Córdova A. Chem. Eur. J. 2007, 13: 683 -
69a
Davies HML.Venkataramani C. Angew. Chem. Int. Ed. 2002, 41: 2197 ; Angew. Chem. 2002, 114, 2301 -
69b
Davies HML.Ni A. Chem. Commun. 2006, 3110 - See, for instance, the discussions in:
-
70a
Seebach D.Estermann H. Tetrahedron Lett. 1987, 28: 3103 -
70b
Estermann H.Seebach D. Helv. Chim. Acta 1988, 71: 1824 ; and references cited therein - 72
Guzmán-Mejía R.Reyes-Rangel G.Juaristi E. Nat. Protoc. 2007, 2: 2759 - 73
Sibi MP.Deshpande PK. J. Chem. Soc., Perkin Trans. 1 2000, 1461 - 74
Xue C.-B.He X.Roderick J.Corbett RL.Decicco CP. J. Org. Chem. 2002, 67: 865 - 75
Zhang X.Ni W.van der Donk WA. J. Org. Chem. 2005, 70: 6685 - 76
Beddow JE.Davies SG.Smith AD.Russell AJ. Chem. Commun. 2004, 2778 - 77
Ponsinet R.Chassaing G.Vaissermann J.Lavielle S. Eur. J. Org. Chem. 2000, 83 - 78
WoŸniak D.Szymańska A.Oldziej S.Łankiewicz L.Grzonka Z. Pol. J. Chem. 2006, 80: 265 -
79a
Seki M.Furutani T.Miyake T.Yamanaka T.Ohmizu H. Tetrahedron: Asymmetry 1996, 7: 1241 -
79b
Seki M.Miyake T.Yamanaka T.Ohmizu H. Synlett 1996, 455 - 80
Tessier A.Lahmar N.Pytkowicz J.Brigaud T. J. Org. Chem. 2008, 73: 3970 - 81
Nagula G.Huber VJ.Lum C.Goodman BA. Org. Lett. 2000, 2: 3527 -
82a
Gutiérrez-García VM.López-Ruiz H.Reyes-Rangel G.Juaristi E. Tetrahedron 2001, 57: 6487 -
82b
Gutiérrez-García VM.Reyes-Rangel G.Muñoz-Muñiz O.Juaristi E. J. Braz. Chem. Soc. 2001, 12: 652 -
82c
Gutiérrez-García VM.Reyes-Rangel G.Muñoz-Muñiz O.Juaristi E. Helv. Chim. Acta 2002, 85: 4189 -
82d
Avila-Ortiz CG.Reyes-Rangel G.Juaristi E. Tetrahedron 2005, 61: 8372 - 83
Stončius A.Nahrwold M.Sewald N. Synthesis 2005, 1829 - 84
Arvanitis E.Motevalli M.Wyatt PB. Tetrahedron Lett. 1996, 37: 4277 -
85a
Stork G. Pure Appl. Chem. 1968, 17: 383 -
85b
Stork G.Jung ME. J. Am. Chem. Soc. 1974, 96: 3682 - Previously phenylethylamine was added directly to α,β-unsaturated esters with poor stereoselectivities; the diastereoisomers formed were separated, so that eventually both enantiomeric products were isolated. For examples, see reference 70 and:
-
86a
Furukawa M.Okawara T.Terawaki Y. Chem. Pharm. Bull. 1977, 25: 1319 -
86b
Kinas R.Pankiewicz K.Stec WJ.Farmer PB.Foster AB.Jarman M. J. Org. Chem. 1977, 42: 1650 - 87
Masamune S.Choy W.Petersen JS.Sita LR. Angew. Chem. Int. Ed. 1985, 24: 1 ; Angew. Chem. 1985, 97, 1 -
88a
Meyers AI. General Heterocyclic Chemistry Series: Heterocycles in Organic Synthesis Wiley-Interscience; New York: 1974. -
88b
Rottmann A.Bartoczek M.Liebscher J. Synthesis 1997, 313 -
89a
Konopelski JP.Chu KS.Negrete GR. J. Org. Chem. 1991, 56: 1355 -
89b
Lakner FJ.Chu KS.Negrete GR.Konopelski JP. Org. Synth. 1996, 73: 201 -
89c
Kinkel JN.Gysel U.Blaser D.Seebach D. Helv. Chim. Acta 1991, 74: 1622 -
89d
Seebach D.Boog A.Schweizer WB. Eur. J. Org. Chem. 1999, 335 -
89e
Juaristi E.Quintana D. Tetrahedron: Asymmetry 1992, 3: 723 -
89f
Juaristi E.Quintana D.Balderas M.García-Peréz E. Tetrahedron: Asymmetry 1996, 7: 2233 -
89g
Juaristi E.Balderas M.López-Ruiz H.Jiménez-Pérez VM.Kaiser-Carril ML.Ramírez-Quirós Y. Tetrahedron: Asymmetry 1999, 10: 3493 -
89h
Muñoz-Muñiz O.Juaristi E. Tetrahedron 2003, 59: 4223 - 90
Agami C.Cheramy S.Dechoux L. Synlett 1999, 1838 - 91
Belokon YN.Mociskite S.Maleev VI.Orlova SA.Ikonnikov NS.Shamuratov EB.Batsanov AS.Struchkov YT. Mendeleev Commun. 1992, 89 - 92
Sewald N.Wendisch V. Tetrahedron: Asymmetry 1998, 9: 1341 - 93
Alexakis A.Benhaim C. Org. Lett. 2000, 2: 2579 - 94
Hübner J.Liebscher J.Pätzel M. Tetrahedron 2002, 58: 10485 -
95a
Sewald N. Angew. Chem. Int. Ed. 2003, 42: 5794 ; Angew. Chem. 2003, 115, 5972 -
95b
Rimkus A.Sewald N. Org. Lett. 2003, 5: 79 -
95c
Rimkus A.Sewald N. Synthesis 2004, 135 - 96
Eilitz U.Leßmann F.Seidelmann O.Wendisch V. Tetrahedron: Asymmetry 2003, 14: 189 - 97
Duursma A.Minnaard AJ.Feringa BL. J. Am. Chem. Soc. 2003, 125: 3700 - 99
van Zijl AW.López F.Minnaard AJ.Feringa BL. J. Org. Chem. 2007, 72: 2558 -
100a
Seebach D.Colvin EW.Lehr F.Weller T. Chimia 1979, 33: 1 -
100b
Ono N. The Nitro Group in Organic Synthesis John Wiley & Sons; New York: 2001. -
101a
Basavaiah D.Rao AJ.Satyanarayana T. Chem. Rev. 2003, 103: 811 -
101b
Lee KY.Gowrisankar S.Kim JN. Bull. Korean Chem. Soc. 2005, 26: 1481 -
101c
Masson G.Housseman C.Zhu J. Angew. Chem. Int. Ed. 2007, 46: 4614 ; Angew. Chem. 2007, 119, 4698 - 102
Lee H.-S.Park J.-S.Kim BM.Gellman SH. J. Org. Chem. 2003, 68: 1575 -
103a
Perlmutter P.Tabone M. Tetrahedron Lett. 1988, 29: 949 -
103b
Perlmutter P.Tabone M. J. Org. Chem. 1995, 60: 6515 - 104
Singh SK.Singh GB.Byri VK.Satish B.Dhamjewar R.Gopalan B. Synth. Commun. 2008, 38: 456 -
105a
Pratt LM.Beckett RP.Davies SJ.Launchbury SB.Miller A.Spavold ZM.Todd RS.Whittaker M. Bioorg. Med. Chem. Lett. 2001, 11: 2585 -
105b
Jiang X.Prasad K.Prashad M.Slade J.Repič O.Blacklock TJ. Synlett 2006, 3179 -
106a
Seebach D. Angew. Chem., Int. Ed. Engl. 1988, 27: 1624 ; Angew. Chem. 1988, 100, 1685 -
106b
Juaristi E.Beck AK.Hansen J.Matt T.Mukhopadhyay T.Simson M.Seebach D. Synthesis 1993, 1271 - 107 A special case is the Et3N-catalyzed
addition of the hydroxy group of a rather complex, polymer-bound
chiral molecule to the ketene derived from 2-aryl-3-phthalimidopropanoic acid;
after hydrolysis, β²Phg derivatives
are isolated:
Akkari R.Calmés M.Di Malta D.Escale F.Martinez J. Tetrahedron: Asymmetry 2003, 14: 1223 -
108a
Sani M.Bruché L.Chiva G.Fustero S.Piera J.Volonterio A.Zanda M. Angew. Chem. Int. Ed. 2003, 42: 2060 ; Angew. Chem. 2003, 115, 2106 -
108b
Volonterio A.Chiva G.Fustero S.Piera J.Rosello MS.Sani M.Zanda M. Tetrahedron Lett. 2003, 44: 7019 -
108c
Fustero S.Garcia Sancho A.Chiva G.Sanz-Cervera JF.Del Pozo C.Aceña JL. J. Org. Chem. 2006, 71: 3299 -
108d
Fustero S.Chiva G.Piera J.Volonterio A.Zanda M.González J.Ramallal AM. Chem. Eur. J. 2007, 13: 8530 - 109
Sibi MP.Patil K. Angew. Chem. Int. Ed. 2004, 43: 1235 ; Angew. Chem. 2004, 116, 1255 - 110
Sibi MP.Tatamidani H.Patil K. Org. Lett. 2005, 7: 2571 -
111a
Takaya Y.Ogasawara M.Hayashi T.Sakai M.Miyaura N. J. Am. Chem. Soc. 1998, 120: 5579 -
111b
Navarre L.Darses S.Genet J.-P. Angew. Chem. Int. Ed. 2004, 43: 719 ; Angew. Chem. 2004, 116, 737 - 112
Elaridi J.Thaqi A.Prosser A.Jackson WR.Robinson AJ. Tetrahedron: Asymmetry 2005, 16: 1309 - 113
Takagi M.Yamamoto K. Tetrahedron 1991, 47: 8869 - 114
Saylik D.Campi EM.Donohue AC.Jackson WR.Robinson AJ. Tetrahedron: Asymmetry 2001, 12: 657 - 115
Huang H.Liu X.Deng J.Qiu M.Zheng Z. Org. Lett. 2006, 8: 3359 - 116
Qiu L.Prashad M.Hu B.Prasad K.Repič O.Blacklock TJ.Kwong FY.Kok SHL.Lee HW.Chan ASC. Proc. Natl. Acad. Sci. U.S.A. 2007, 104: 16787 - 117
Deng J.Hu X.-P.Huang J.-D.Yu S.-B.Wang D.-Y.Duan Z.-C.Zheng Z. J. Org. Chem. 2008, 73: 2015 - 118
Tanaka T.Muto T.Maruoka H.Imajo S.Fukami H.Tomimori Y.Fukuda Y.Nakatsuka T. Bioorg. Med. Chem. Lett. 2007, 17: 3431 - 119
Swiderska MA.Stewart JD. Org. Lett. 2006, 8: 6131 - 120
Martin NJA.Cheng X.List B. J. Am. Chem. Soc. 2008, 130: 13862 -
121a
Noyori R. Angew. Chem. Int. Ed. 2002, 41: 2008 ; Angew. Chem. 2002, 114, 2108 -
121b
Noyori R.Kitamura M. Angew. Chem. Int. Ed. 1991, 30: 34 ; Angew. Chem. 1991, 103, 34 -
121c
Züger MF.Giovannini F.Seebach D. Angew. Chem. Int. Ed. 1983, 22: 1012; Angew. Chem. 1983, 95, 1024 -
121d
Seebach D.Renaud P.Schweizer WB.Züger MF.Brienne MJ. Helv. Chim. Acta 1984, 67: 1843 -
121e
Seebach D.Sutter MA.Weber RH.Züger MF. Org. Synth. 1985, 63: 1 -
121f
Ehrler J.Giovannini F.Lamatsch B.Seebach D. Chimia 1986, 40: 172 -
121g
Seebach D.Eberle M. Synthesis 1986, 37 -
121h
Seebach D.Herradon B. Tetrahedron Lett. 1987, 28: 3791 -
121i
Seebach D.Roggo S.Maetzke T.Braunschweiger H.Cercus J.Krieger M. Helv. Chim. Acta 1987, 70: 1605 -
121j
Herradon B.Seebach D. Helv. Chim. Acta 1989, 72: 690 -
121k
Haag T.Arslan T.Seebach D. Chimia 1989, 43: 351 -
121l
Noyori R.Ikeda T.Ohkuma T.Widhalm M.Kitamura M.Takaya H.Akutagawa S.Sayo N.Saito T.Taketomi T.Kumobayashi H. J. Am. Chem. Soc. 1989, 111: 9134 - 122
Mashima K.Matsumura Y.Kusano K.Kumobayashi H.Sayo N.Hori Y.Ishizaki T.Akutagawa S.Takaya H. J. Chem. Soc., Chem. Commun. 1991, 609 - 123
Zhang X.Mashima K.Koyano K.Sayo N.Kumobayashi H.Akutagawa S.Takaya H. J. Chem. Soc., Perkin Trans. 1 1994, 2309 - 124
Benincori T.Cesarotti E.Piccolo O.Sannicolò F. J. Org. Chem. 2000, 65: 2043 - 125
Cha JH.Pae AN.Choi KI.Cho YS.Kim WH.Han YS.Yun H.-C.Lee J.Koh HY.Lee E. Biotechnol. Lett. 2002, 24: 1695 - 126
Shimoda K.Kubota N.Hamada H.Hamada H. Tetrahedron Lett. 2006, 47: 1541 - 127
Díaz-Sánchez BR.Iglesias-Arteaga MA.Melgar-Fernández R.Juaristi E. J. Org. Chem. 2007, 72: 4822 -
128a
Sammis GM.Jacobsen EN. J. Am. Chem. Soc. 2003, 125: 4442 -
128b
Goodman SN.Jacobsen EN. Angew. Chem. Int. Ed. 2002, 41: 4703 ; Angew. Chem. 2002, 114, 4897 - 129
Trost BM.Hisaindee S. Org. Lett. 2006, 8: 6003 - 130
Wang J.Li H.Duan W.Zu L.Wang W. Org. Lett. 2005, 7: 4713 - 131
Liu H.Xu J.Du D.-M. Org. Lett. 2007, 9: 4725 - 132
Schleich S.Helmchen G. Eur. J. Org. Chem. 1999, 2515 -
133a
Zheng X.Day C.Gollamudi R. Chirality 1995, 7: 90 -
133b
Chung YJ.Huck BR.Christianson LA.Stanger HE.Krauthäuser S.Powell DR.Gellman SH. J. Am. Chem. Soc. 2000, 122: 3995 - 134 For a reliable determination of
the enantiopurity of β²-, β³- and γ-amino
acids by NMR analysis of diastereoisomeric Pd complexes see:
Böhm A.Seebach D. Helv. Chim. Acta 2000, 83: 3262 -
138a
Hellmann H.Haas G. Chem. Ber. 1957, 90: 1357 -
138b
Böhme H.Broese R.Eiden F. Chem. Ber. 1959, 92: 1258 -
138c
Tan CYK.Wainman D.Weaver DF. Bioorg. Med. Chem. 2003, 11: 113 -
138d
Hessler JC. J. Am. Chem. Soc. 1913, 35: 990 -
138e
Gardner PD.Brandon RL. J. Org. Chem. 1957, 22: 1704 -
138f
Lee J.Gauthier D.Rivero RA. J. Org. Chem. 1999, 64: 3060 -
138g
Albarella JP. J. Org. Chem. 1977, 42: 2009 -
138h
Wang X.Kitamura M.Maruoka K. J. Am. Chem. Soc. 2007, 129: 1038 -
138i
Romanova NN.Budylin VA.Grishina GV.Potapov VM.Demchuk ML.Sivkova IY.Bundel YG. Chem. Heterocycl. Compd. 1986, 22: 495 -
138j
Urbach A.Muccioli GG.Stern E.Lambert DM.Marchand-Brynaert J. Bioorg. Med. Chem. Lett. 2008, 18: 4163 -
138k
Seebach D.Henning R.Lehr F.Gonnermann J. Tetrahedron Lett. 1977, 1161 -
138l
Seebach D.Henning R.Mukhopadhyay T. Chem. Ber. 1982, 115: 1705 - 140
Salamonczyk GM.Han K.G uo Z.-w.Sih CJ. J. Org. Chem. 1996, 61: 6893 - 141
Solymár M.Liljeblad A.Lázár L.Fülöp F.Kanerva LT. Tetrahedron: Asymmetry 2002, 13: 1923 - 142
Fitz M.Forró E.Vigóczki E.Lázár L.Fülöp F. Tetrahedron: Asymmetry 2008, 19: 1114 - 143
Ma D.-Y.Wang D.-X.Zheng Q.-Y.Wang M.-X. Tetrahedron: Asymmetry 2006, 17: 2366 - 145
Ridley DD. Information Retrieval: SciFinder and SciFinder Scholar John Wiley & Sons; Chichester UK: 2002. -
151a
Weisgerber DW. J. Am. Soc. Inf. Sci. 1997, 48: 349 -
151b
Buntrock RE. J. Chem. Inf. Comput. Sci. 2001, 41: 259 -
151c
Blackwood JE.Blower PE.Layten SW.Lillie DH.Lipkus AH.Peer JP.Qian C.Staggenborg LM.Watson CE. J. Chem. Inf. Comput. Sci. 1991, 31: 204 - …compare with total syntheses of complex natural products!
-
157a
Nicolaou KC.Vourloumis D.Winssinger N.Baran PS. Angew. Chem. Int. Ed. 2000, 39: 44 ; Angew. Chem. 2000, 112, 46 -
157b
Nicolaou KC.Sorensen EJ. Classics in Total Synthesis Wiley-VCH; Weinheim: 1996. -
157c
Nicolaou KC.Montagnon T. Molecules That Changed the World: A Brief History of the Art and Science of Synthesis and Its Impact on Society Wiley-VCH; Weinheim: 2008. - 158
Guichard G.Abele S.Seebach D. Helv. Chim. Acta 1998, 81: 187 - 159
Calmés M.Escale F.Glot C.Rolland M.Martinez J. Eur. J. Org. Chem. 2000, 2459 - 160
Yokomatsu T.Takada K.Yasumoto A.Yuasa Y.Shibuya S. Heterocycles 2002, 56: 545 - 161
Sharma GVM.Reddy KL.Lakshmi PS.Ravi R.Kunwar AC. J. Org. Chem. 2006, 71: 3967
References
Others groups studied β-peptides with ‘unnatural’ side chains or with cyclic β-amino acids as building blocks (see section 8 in an extensive review article on β-peptides²d,e and references 2b and 2f).
15See Figure [4] c in reference 10.
64The sultam D is an irritant which may prevent its application on large scale or in an industrial process.
71An amino group itself is a poor leaving group (R2N-) from an enolate. On the other hand, phthalimido or sulfonylamido groups [R(R"SO2)N-] would be expected to be good leaving groups.
98Seebach, D.; Marti, R.; Beck, A. K.; Sprecher, H.; Pletscher, S.; Möri, M. hitherto unpublished results; ETH Zürich and Zürcher Hochschule für Angewandte Wissenschaften 2006-2008.
135In many cases, the reported preparations ended with ‘reasonable’ precursors to properly protected β²-amino acids for peptide synthesis.
136In one case discussed (Scheme [¹¹] , c), an approximately 1:1 mixture of diastereoisomers was actually separated chromatographically to eventually provide the enantiomeric β²-amino acid derivatives.¹0²
137For a large-scale production of an enantiopure drug or pesticide, on the other hand, it is not acceptable to lose 50% of material through resolution, after a multistep synthesis.
139Lukaszuk, A.; Tourwé, D. hitherto unpublished results; Department of Organic Chemistry Vrije Universiteit Brussel, Belgium.
144A notable exception is Gmelin, for which the version available at the host STN International has not been updated since 1997. For other databases, there may be significant differences in item coverage; for example, the Science Citation Index database version available under Web of Knowledge/Web of Science goes back to 1900, while the same database at the host STN International extends only back to 1974.
146STN International: http://www.stn-international.de/ (last accessed 27.8.2008).
147STN Messenger Commands: http://www.stn-international.de/training_center/rl/commands/Contents.htm (last accessed 27.8.2008).
148STN Registry: http://www.stn-international.de/stndatabases/databases/registry.html (last accessed 27.8.2008).
149STN CASREACT: http://www.stn-international.de/stndatabases/databases/casreact.html html (last accessed 27.8.2008).
150So far, for any such ‘AutoFix’ problem in SciFinder Scholar referred to us, the undesired limit could be eliminated by searching in STN, but at the extra cost involved in those ‘pay-per-use’ searches at this host.
152This reliance on CASREACT is not without problems, both regarding reaction selection policies of CAS, and particularly the time coverage of this database: specified by CAS as covering the literature back to 1840 (http://www.cas.org/expertise/cascontent/casreact.html), full coverage provided by CAS literature exception starts only in 1985 (for reactions from patents, only in 1991). Before that time, coverage is almost entirely provided by non-CAS sources: ZIC/VINITI, and INPI (French Patent Office).
153CAplus: http://www.cas.org/expertise/cascontent/caplus/index.html (last accessed 27.8.2008).
154Some publications appear in more than one of the categories shown.
155SciFinder search (as of November 2008) provides more than 500 hits of commercially available enantiopure β²-amino acids, but only 16 hits for β²-amino acids, which are offered up to the 10-kg scale.
156For instance, Phoenix Chemicals or Novasep.