Subscribe to RSS
DOI: 10.1055/s-0028-1087542
Hydroboration of Vinyl Arenes Using SiO2-Supported Rhodium Catalysts
Publication History
Publication Date:
21 January 2009 (online)
Abstract
The metal-catalyzed hydroboration of vinyl arenes using catecholborane (HBcat) and pinacolborane (HBpin) has been examined with SiO2-supported rhodium catalysts. Reactions with simple vinyl arenes (ArCH=CH2) and HBcat using Rh(acac)(coe)2 (coe = cyclooctene) gave selective formation of the corresponding branched isomers [ArCH(Bcat)Me]. Catalyst systems could be reused with no appreciable loss in activity or selectivity.
Key words
catalysis - heterogeneous - hydroborations - rhodium - silica support
-
1a
Brown HC.Kramer GW.Levy AB.Midland MM. Organic Syntheses via Boranes Wiley-Interscience; New York: 1975. -
1b
Miyaura N.Suzuki A. Chem. Rev. 1995, 95: 2457 -
2a
Männig D.Nöth H. Angew. Chem., Int. Ed. Engl. 1985, 24: 878 -
2b
Beletskaya I.Pelter A. Tetrahedron 1997, 53: 4957 -
2c
Kadlecek DE.Carroll PJ.Sneddon LG. J. Am. Chem. Soc. 2000, 122: 10868 -
2d
Widauer C.Grützmacher H.Ziegler T. Organometallics 2000, 19: 2097 -
2e
Huang X.Lin Z. Computational Modeling of Homogeneous CatalysisMaseras F.Lledos A. Kluwer Academic; Amsterdam: 2002. p.189-212 -
2f
Crudden CM.Edwards D. Eur. J. Org. Chem. 2003, 4695 -
2g
Carroll A.-M.O’Sullivan TP.Guiry PJ. Adv. Synth. Catal. 2005, 347: 609 -
2h
Vogels CM.Westcott SA. Curr. Org. Chem. 2005, 9: 687 -
3a
Kono H.Ito K.Nagai Y. Chem. Lett. 1975, 1095 -
3b
Westcott SA.Blom HP.Marder TB.Baker RT.Calabrese JC. Inorg. Chem. 1993, 32: 2175 - 4
Dorigo AE.von Ragué Schleyer P. Angew. Chem., Int. Ed. Engl. 1995, 34: 115 -
5a
Westcott SA.Blom HP.Marder TB.Baker RT. J. Am. Chem. Soc. 1992, 114: 8863 -
5b
Brown JM.Lloyd-Jones GC. J. Chem. Soc., Chem. Commun. 1992, 710 -
5c
Musaev DG.Mebel AM.Morokuma K. J. Am. Chem. Soc. 1994, 116: 10693 -
5d
Coapes RB.Souza FES.Thomas RL.Hall JJ.Marder TB. Chem. Commun. 2003, 614 -
6a
Hayashi T.Matsumoto Y.Ito Y. Tetrahedron: Asymmetry 1991, 2: 601 -
6b
Lam WH.Lam KC.Lin Z.Shimada S.Perutz RN.Marder TB. Dalton Trans. 2004, 1556 -
7a
Guiry PJ.McCarthy M.Lacey PM.Saunders CP.Kelly S.Connolly DJ. Curr. Org. Chem. 2000, 4: 821 -
7b
Demay S.Volant F.Knochel P. Angew. Chem. Int. Ed. 2001, 40: 1235 -
7c
Betley TA.Peters JC. Angew. Chem. Int. Ed. 2003, 42: 2385 -
7d
Segarra AM.Daura-Oller E.Claver C.Poblet JM.Bo C.Fernández E. Chem. Eur. J. 2004, 10: 6456 -
7e
Connolly DJ.Lacey PM.McCarthy M.Saunders CP.Carroll A.-M.Goddard R.Guiry PJ. J. Org. Chem. 2004, 69: 6572 -
7f
Daura-Oller E.Segarra AM.Poblet JM.Claver C.Fernández E.Bo C. J. Org. Chem. 2004, 69: 2669 -
8a
Juliette JJJ.Horváth IT.Gladysz JA. Angew. Chem., Int. Ed. Engl. 1997, 36: 1610 -
8b
Juliette JJJ.Rutherford D.Horváth IT.Gladysz JA. J. Am. Chem. Soc. 1999, 121: 2696 -
8c
Taylor RA.Santora BP.Gagné MR. Org. Lett. 2000, 2: 1781 -
8d
Carter CAG.Baker RT.Nolan SP.Tumas W. Chem. Commun. 2000, 347 -
8e
Köllner C.Togni A. Can. J. Chem. 2001, 79: 1762 -
8f
Segarra AM.Guerrero C.Claver C.Fernández E. Chem. Commun. 2001, 1808 -
8g
Segarra AM.Guerrero R.Claver C.Fernández E. Chem. Eur. J. 2003, 9: 191 -
8h
Segarra AM.Guirado F.Claver C.Fernández E. Tetrahedron: Asymmetry 2003, 14: 1611 -
9a
Chen R.Bronger RPJ.Kamer PCJ.van Leeuwen PWNM.Reek JNH. J. Am. Chem. Soc. 2004, 126: 14557 -
9b
Huang L.Kawi S. J. Mol. Catal. A: Chem. 2004, 211: 23 -
9c
Standfest-Hauser CM.Lummerstorfer T.Schmid R.Hoffmann H.Kirchner K.Puchberger M.Trzeciak AM.Mieczyńska E.Tylus W.Ziókowski JJ. J. Mol. Catal. A: Chem. 2004, 210: 179 -
9d
Marchetti M.Paganelli S.Viel E. J. Mol. Catal. A: Chem. 2004, 222: 143 -
9e
Bektesevic S.Tack T.Mason MR.Abraham MA. Ind. Eng. Chem. Res. 2005, 44: 4973 -
9f
Wilkinson MJ.van Leeuwen PWNM.Reek JNH. Org. Biomol. Chem. 2005, 3: 2371 -
9g
Debono N.Djakovitch L.Pinel C. J. Organomet. Chem. 2006, 691: 741 -
10a
Cipot J.Vogels CM.McDonald R.Westcott SA.Stradiotto M. Organometallics 2006, 25: 5965 -
10b
Geier SJ.Chapman EE.McIsaac DI.Vogels CM.Decken A.Westcott SA. Inorg. Chem. Commun. 2006, 9: 788 -
10c
McIsaac DI.Geier SJ.Vogels CM.Decken A.Westcott SA. Inorg. Chim. Acta 2006, 359: 2771 -
10d
Vogels CM.Decken A.Westcott SA. Can. J. Chem. 2006, 84: 146 -
13a
Brown JM.Lloyd-Jones GC. J. Chem. Soc., Chem. Commun. 1992, 710 -
13b
Westcott SA.Marder TB.Baker RT. Organometallics 1993, 12: 975 -
13c
Baker RT.Calabrese JC.Westcott SA.Nguyen P.Marder TB. J. Am. Chem. Soc. 1993, 115: 4367 -
13d
Brown JM.Lloyd-Jones GC. J. Am. Chem. Soc. 1994, 116: 866 -
13e
Motry DH.Smith MR. J. Am. Chem. Soc. 1995, 117: 6615 -
13f
Motry DH.Brazil AG.Smith MR. J. Am. Chem. Soc. 1997, 119: 2743 -
13g
Murata M.Watanabe S.Masuda Y. Tetrahedron Lett. 1999, 40: 2585 -
13h
Waltz KM.Muhoro CN.Hartwig JF. Organometallics 1999, 18: 3383 -
13i
Vogels CM.Hayes PG.Shaver MP.Westcott SA. Chem. Commun. 2000, 51 -
13j
Kadlecek DE.Carroll PJ.Sneddon LG. J. Am. Chem. Soc. 2000, 122: 10868 -
13k
Murata M.Kawakita K.Asana T.Watanabe S.Masuda Y. Bull. Chem. Soc. Jpn. 2002, 75: 825 -
13l
Caballero A.Sabo-Etienne S. Organometallics 2007, 26: 1191 -
13m
Molinos E.Brayshaw SK.Kociok-Köhn G.Weller AS. Organometallics 2007, 26: 2370 -
13n
Mkhalid IAI.Coapes RB.Edes SN.Coventry DN.Souza FES.Thomas RL.Hall JJ.Bi S.-W.Lin Z.Marder TB. Dalton Trans. 2008, 1055 - 14
Burke JM.Coates RB.Goeta AE.Howard JAK.Marder TB.Robins EG.Westcott SA. J. Organomet. Chem. 2002, 649: 199 - 15
Burgess K.van der Donk WA.Westcott SA.Marder TB.Baker RT.Calabrese JC. J. Am. Chem. Soc. 1992, 114: 9350 -
17a
Pereira S.Srebnik M. Organometallics 1995, 14: 3127 -
17b
Zheng B.Srebnik M. J. Org. Chem. 1995, 60: 486 -
17c
Pereira S.Srebnik M. Tetrahedron Lett. 1996, 37: 3283 -
17d
Ramachandran PV.Jennings MP.Brown HC. Org. Lett. 1999, 1: 1399 -
17e
Ohmura T.Yamamoto Y.Miyaura N. J. Am. Chem. Soc. 2000, 122: 4990 -
17f
Segarra AM.Claver C.Fernández E. Chem. Commun. 2001, 464 -
17g
Hoffman RW.Krüger J.Brückner D. New J. Chem. 2001, 25: 102 -
17h
Rubina M.Rubin M.Gevorgyan V. J. Am. Chem. Soc. 2003, 125: 7198 -
17i
Yamamoto Y.Fujikawa R.Umemoto T.Miyaura N. Tetrahedron 2004, 60: 10695 -
17j
Rubin M.Gevorgyan V. Synthesis 2004, 796 -
17k
Lee T.Baik C.Jung I.Song KH.Kim S.Kim D.Kang SO.Ko J. Organometallics 2004, 23: 4569 -
17l
Crudden CM.Hleba YB.Chen AC. J. Am. Chem. Soc. 2004, 126: 9200 -
17m
Horino Y.Livinghouse T.Stan M. Synlett 2004, 2639 -
17n
Wang YD.Kimball G.Prashad AS.Wang Y. Tetrahedron Lett. 2005, 46: 8777 -
17o
Edwards DE.Crudden CM. Adv. Synth. Catal. 2005, 347: 50 -
17p
Moteki SA.Wu D.Chandra KL.Reddy DS.Takacs JM. Org. Lett. 2006, 8: 3097 -
17q
Hadebe SW.Robinson RS. Tetrahedron Lett. 2006, 47: 1299 -
17r
Hadebe SW.Robinson RS. Eur. J. Org. Chem. 2006, 4898 -
17s
Kinder RE.Widenhoefer RA. Org. Lett. 2006, 8: 1967 -
17t
Ghebreyessus KY.Angelici RJ. Organometallics 2006, 25: 3040 -
17u
Scurto AM.Leitner W. Chem. Commun. 2006, 3681 -
17v
Onodera G.Nishibayashi Y.Uemura S. Organometallics 2006, 25: 35 -
17w
Wechsler D.Rankin MA.McDonald R.Ferguson MJ.Schatte G.Stradiotto M. Organometallics 2007, 26: 6418 -
17x
Moteki SA.Takacs JM. Angew. Chem. Int. Ed. 2008, 47: 894
References and Notes
Si-DPP (R39030B) is available at SiliCycle (www.silicycle.com).
12
Experimental Procedure
In
a typical experiment, a THF (0.5 mL) solution of Rh(acac)(coe)2 (8
mg, 0.019 mmol) was added to a THF (2 mL) slurry of Si-DPP (60 mg,
0.056 mmol), and the mixture was stirred for 5 h. To this mixture
was added a THF (0.5 mL) solution of 2-vinylnaphthalene (135 mg,
0.87 mmol) followed by a THF (0.5 mL) solution of HBcat (126 mg, 1.05
mmol). The reaction was allowed to proceed for 18 h at which point
the mixture was filtered through a small plug of Celite before solvent
was removed under vacuum. The residual oil was dissolved in C6D6 (1
mL) and analyzed by multinuclear NMR spectroscopy.5a,¹0 Confirmation
of product formation was carried out using GC-MS on products derived
from a basic, oxidative workup.
Selected
NMR Spectroscopic Data
4-MeOC6H4CH(Bcat)Me
(i; R = OMe; Bcat): ¹H
NMR (270 MHz, C6D6): δ = 2.74 [q, J = 7.7 Hz,
CH(Bcat)CH3], 1.48 [d, J = 7.7 Hz,
CH(Bcat)CH
3].
4-MeOC6H4CH2CH2 (Bcat)
(ii; R = OMe; Bcat): ¹H
NMR (270 MHz, C6D6): δ = 2.79 [t, J = 7.9 Hz,
CH
2CH2 (Bcat)], 1.42 [t, J = 7.9 Hz,
CH2CH
2 (Bcat)].
4-MeOC6H4CH=CH(Bcat)
(iii; R = OMe; Bcat): ¹H
NMR (270 MHz, C6D6): δ = 7.82 [d, J = 18.3 Hz,
CH=CH(Bcat)], 6.34 [d, J = 18.3 Hz,
CH=CH(Bcat)].
4-MeOC6H4CH2CH(Bcat)2 (iv; R = OMe; Bcat): ¹H
NMR (270 MHz, C6D6): δ = 3.36 [d, J = 8.2 Hz,
CH
2CH(Bcat)2], 2.11 [t, J = 8.2 Hz,
CH2CH(Bcat)2].
4-FC6H4CH(Bcat)Me
(i; R = F; Bcat): ¹H
NMR (270 MHz, C6D6): δ = 2.60 [q, J = 7.7 Hz,
CH(Bcat)CH3), 1.36 [d, J = 7.7 Hz,
CH(Bcat)CH
3].
4-FC6H4CH=CH(Bcat)
(iii; R = F; Bcat): ¹H
NMR (270 MHz, C6D6): δ = 7.62 [d, J = 18.3 Hz,
CH=CH(Bcat)], 6.23 [d, J = 18.3 Hz,
CH=CH(Bcat)].
4-FC6H4CH2CH(Bcat)2 (iv; R = F; Bcat): ¹H
NMR (270 MHz, C6D6): δ = 3.22 [d, J = 8.2 Hz,
CH
2CH(Bcat)2],
1.99 [t, J = 8.2
Hz, CH2CH(Bcat)2].
Selected NMR Spectroscopic
Data
4-MeOC6H4CH(Bpin)Me (i; R = OMe; Bpin): ¹H
NMR (270 MHz, C6D6): δ = 2.56 [q, J = 7.7 Hz,
CH(Bpin)CH3], 1.50 [d, J = 7.7 Hz,
CH(Bpin)CH
3].
4-MeOC6H4CH2CH2(Bpin)
(ii; R = OMe; Bpin): ¹H
NMR (270 MHz, C6D6): δ = 2.87 [t, J = 7.9 Hz,
CH
2CH2 (Bpin)], 1.12 [t, J = 7.9 Hz,
CH2CH
2(Bpin)].
4-MeOC6H4CH=CH(Bpin)
(iii; R = OMe; Bpin): ¹H
NMR (270 MHz, C6D6): δ = 7.80 [d, J = 18.3 Hz,
CH=CH(Bpin)], 6.40 [d, J = 18.3 Hz,
CH=CH(Bpin)].
4-FC6H4CH(Bpin)Me
(i; R = F; Bpin): ¹H
NMR (270 MHz, C6D6): δ = 2.45 [q, J = 7.7 Hz,
CH(Bpin)CH3], 1.38 [d, J = 7.7 Hz,
CH(Bpin)CH
3].
4-FC6H4CH2CH2(Bpin)
(ii; R = F; Bpin): ¹H
NMR (270 MHz, C6D6): δ = 2.70 [t, J = 8.1 Hz,
CH
2CH2 (Bpin)],
1.12 [t, J = 8.1
Hz, CH2CH
2(Bpin)].
4-FC6H4CH=CH(Bpin)
(iii; R = F; Bpin): ¹H
NMR (270 MHz, C6D6): δ = 7.60 [d, J = 18.5 Hz,
CH=CH(Bpin)], 6.27 [d, J = 18.5 Hz,
CH=CH(Bpin)].
4-FC6H4CH2CH(Bpin)2 (iv; R = F; Bpin): ¹H
NMR (270 MHz, C6D6): δ = 3.11 [d, J = 8.2 Hz,
CH
2CH(Bpin)2],
1.50 [t, J = 8.2
Hz, CH2CH(Bpin)2].
PhCH(Bpin)Me
(i; R = H; Bpin): ¹H
NMR (270 MHz, C6D6): δ = 2.51 [q, J = 7.4 Hz,
CH(Bpin)CH3], 1.42 [d, J = 7.4 Hz,
CH(Bpin)CH
3].
PhCH2CH2(Bpin)
(ii; R = H; Bpin): ¹H
NMR (270 MHz, C6D6): δ = 2.80 [t, J = 8.0 Hz,
CH
2CH2 (Bpin)],
1.03 [t, J = 8.0
Hz, CH2CH
2 (Bpin)].
PhCH=CH(Bpin)
(iii; R = H; Bpin): ¹H
NMR (270 MHz, C6D6): δ =7.70 [d, J = 18.5 Hz,
CH=CH(Bpin)], 6.40 [d, J = 18.5 Hz,
CH=CH(Bpin)].
PhCH2CH(Bpin)2 (iv; R = H; Bpin): ¹H
NMR (270 MHz, C6D6): δ = 3.20 [d, J = 8.0 Hz,
CH
2CH(Bpin)2],
1.30 [t, J = 8.0
Hz, CH2CH(Bpin)2].
Selected NMR Spectroscopic
Data
2,4,6-Me3C6H2CH(Bcat)Me
(v): ¹H NMR (270 MHz,
C6D6): δ = 2.90 [q, J = 7.7 Hz,
CH(Bcat)CH3], 1.42 [d, J = 7.7 Hz, CH(Bcat)CH
3].
2,4,6-Me3C6H2CH2CH2(Bcat)
(vi): ¹H NMR (270 MHz, C6D6): δ = 2.81 [t, J = 7.9 Hz,
CH
2CH2 (Bcat)],
1.31 [t, J = 7.9
Hz, CH2CH
2 (Bcat)].
2,4,6-Me3C6H2CH=CH(Bcat)
(vii): ¹H NMR (270
MHz, C6D6): δ = 7.90 [d, J = 18.3 Hz,
CH=CH(Bcat)], 6.10 [d, J = 18.3 Hz,
CH=CH(Bcat)].
2,4,6-Me3C6H2CH2CH(Bcat)2 (viii): ¹H NMR (270
MHz, C6D6): δ = 3.41 [d, J = 8.2 Hz,
CH
2CH(Bcat)2],
2.11 [t, J = 8.2
Hz, CH2CH(Bcat)2].