Synlett 2009(3): 477-481  
DOI: 10.1055/s-0028-1087542
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Hydroboration of Vinyl Arenes Using SiO2-Supported Rhodium Catalysts

Michael J. Geiera, Stephen J. Geiera, Christopher M. Vogelsa, François Bélandb, Stephen A. Westcott*a
a Department of Chemistry, Mount Allison University, Sackville, NB, E4L 1G8, Canada
Fax: +1(506)3642313; e-Mail: swestcott@mta.ca;
b Silicycle, 1200 St-Jean-Baptiste Avenue, Québec, PQ, G2E 5E8, Canada
Further Information

Publication History

Received 21 July 2008
Publication Date:
21 January 2009 (online)

Abstract

The metal-catalyzed hydroboration of vinyl arenes using catecholborane (HBcat) and pinacolborane (HBpin) has been examined with SiO2-supported rhodium catalysts. Reactions with simple vinyl arenes (ArCH=CH2) and HBcat using Rh(acac)(coe)2 (coe = cyclooctene) gave selective formation of the corresponding branched isomers [ArCH(Bcat)Me]. Catalyst systems could be reused with no appreciable loss in activity or selectivity.

    References and Notes

  • 1a Brown HC. Kramer GW. Levy AB. Midland MM. Organic Syntheses via Boranes   Wiley-Interscience; New York: 1975. 
  • 1b Miyaura N. Suzuki A. Chem. Rev.  1995,  95:  2457 
  • 2a Männig D. Nöth H. Angew. Chem., Int. Ed. Engl.  1985,  24:  878 
  • 2b Beletskaya I. Pelter A. Tetrahedron  1997,  53:  4957 
  • 2c Kadlecek DE. Carroll PJ. Sneddon LG. J. Am. Chem. Soc.  2000,  122:  10868 
  • 2d Widauer C. Grützmacher H. Ziegler T. Organometallics  2000,  19:  2097 
  • 2e Huang X. Lin Z. Computational Modeling of Homogeneous Catalysis   Maseras F. Lledos A. Kluwer Academic; Amsterdam: 2002.  p.189-212  
  • 2f Crudden CM. Edwards D. Eur. J. Org. Chem.  2003,  4695 
  • 2g Carroll A.-M. O’Sullivan TP. Guiry PJ. Adv. Synth. Catal.  2005,  347:  609 
  • 2h Vogels CM. Westcott SA. Curr. Org. Chem.  2005,  9:  687 
  • 3a Kono H. Ito K. Nagai Y. Chem. Lett.  1975,  1095 
  • 3b Westcott SA. Blom HP. Marder TB. Baker RT. Calabrese JC. Inorg. Chem.  1993,  32:  2175 
  • 4 Dorigo AE. von Ragué Schleyer P. Angew. Chem., Int. Ed. Engl.  1995,  34:  115 
  • 5a Westcott SA. Blom HP. Marder TB. Baker RT. J. Am. Chem. Soc.  1992,  114:  8863 
  • 5b Brown JM. Lloyd-Jones GC. J. Chem. Soc., Chem. Commun.  1992,  710 
  • 5c Musaev DG. Mebel AM. Morokuma K. J. Am. Chem. Soc.  1994,  116:  10693 
  • 5d Coapes RB. Souza FES. Thomas RL. Hall JJ. Marder TB. Chem. Commun.  2003,  614 
  • 6a Hayashi T. Matsumoto Y. Ito Y. Tetrahedron: Asymmetry  1991,  2:  601 
  • 6b Lam WH. Lam KC. Lin Z. Shimada S. Perutz RN. Marder TB. Dalton Trans.  2004,  1556 
  • 7a Guiry PJ. McCarthy M. Lacey PM. Saunders CP. Kelly S. Connolly DJ. Curr. Org. Chem.  2000,  4:  821 
  • 7b Demay S. Volant F. Knochel P. Angew. Chem. Int. Ed.  2001,  40:  1235 
  • 7c Betley TA. Peters JC. Angew. Chem. Int. Ed.  2003,  42:  2385 
  • 7d Segarra AM. Daura-Oller E. Claver C. Poblet JM. Bo C. Fernández E. Chem. Eur. J.  2004,  10:  6456 
  • 7e Connolly DJ. Lacey PM. McCarthy M. Saunders CP. Carroll A.-M. Goddard R. Guiry PJ. J. Org. Chem.  2004,  69:  6572 
  • 7f Daura-Oller E. Segarra AM. Poblet JM. Claver C. Fernández E. Bo C. J. Org. Chem.  2004,  69:  2669 
  • 8a Juliette JJJ. Horváth IT. Gladysz JA. Angew. Chem., Int. Ed. Engl.  1997,  36:  1610 
  • 8b Juliette JJJ. Rutherford D. Horváth IT. Gladysz JA. J. Am. Chem. Soc.  1999,  121:  2696 
  • 8c Taylor RA. Santora BP. Gagné MR. Org. Lett.  2000,  2:  1781 
  • 8d Carter CAG. Baker RT. Nolan SP. Tumas W. Chem. Commun.  2000,  347 
  • 8e Köllner C. Togni A. Can. J. Chem.  2001,  79:  1762 
  • 8f Segarra AM. Guerrero C. Claver C. Fernández E. Chem. Commun.  2001,  1808 
  • 8g Segarra AM. Guerrero R. Claver C. Fernández E. Chem. Eur. J.  2003,  9:  191 
  • 8h Segarra AM. Guirado F. Claver C. Fernández E. Tetrahedron: Asymmetry  2003,  14:  1611 
  • 9a Chen R. Bronger RPJ. Kamer PCJ. van Leeuwen PWNM. Reek JNH. J. Am. Chem. Soc.  2004,  126:  14557 
  • 9b Huang L. Kawi S. J. Mol. Catal. A: Chem.  2004,  211:  23 
  • 9c Standfest-Hauser CM. Lummerstorfer T. Schmid R. Hoffmann H. Kirchner K. Puchberger M. Trzeciak AM. Mieczyńska E. Tylus W. Ziókowski JJ. J. Mol. Catal. A: Chem.  2004,  210:  179 
  • 9d Marchetti M. Paganelli S. Viel E. J. Mol. Catal. A: Chem.  2004,  222:  143 
  • 9e Bektesevic S. Tack T. Mason MR. Abraham MA. Ind. Eng. Chem. Res.  2005,  44:  4973 
  • 9f Wilkinson MJ. van Leeuwen PWNM. Reek JNH. Org. Biomol. Chem.  2005,  3:  2371 
  • 9g Debono N. Djakovitch L. Pinel C. J. Organomet. Chem.  2006,  691:  741 
  • 10a Cipot J. Vogels CM. McDonald R. Westcott SA. Stradiotto M. Organometallics  2006,  25:  5965 
  • 10b Geier SJ. Chapman EE. McIsaac DI. Vogels CM. Decken A. Westcott SA. Inorg. Chem. Commun.  2006,  9:  788 
  • 10c McIsaac DI. Geier SJ. Vogels CM. Decken A. Westcott SA. Inorg. Chim. Acta  2006,  359:  2771 
  • 10d Vogels CM. Decken A. Westcott SA. Can. J. Chem.  2006,  84:  146 
  • 13a Brown JM. Lloyd-Jones GC. J. Chem. Soc., Chem. Commun.  1992,  710 
  • 13b Westcott SA. Marder TB. Baker RT. Organometallics  1993,  12:  975 
  • 13c Baker RT. Calabrese JC. Westcott SA. Nguyen P. Marder TB. J. Am. Chem. Soc.  1993,  115:  4367 
  • 13d Brown JM. Lloyd-Jones GC. J. Am. Chem. Soc.  1994,  116:  866 
  • 13e Motry DH. Smith MR. J. Am. Chem. Soc.  1995,  117:  6615 
  • 13f Motry DH. Brazil AG. Smith MR. J. Am. Chem. Soc.  1997,  119:  2743 
  • 13g Murata M. Watanabe S. Masuda Y. Tetrahedron Lett.  1999,  40:  2585 
  • 13h Waltz KM. Muhoro CN. Hartwig JF. Organometallics  1999,  18:  3383 
  • 13i Vogels CM. Hayes PG. Shaver MP. Westcott SA. Chem. Commun.  2000,  51 
  • 13j Kadlecek DE. Carroll PJ. Sneddon LG. J. Am. Chem. Soc.  2000,  122:  10868 
  • 13k Murata M. Kawakita K. Asana T. Watanabe S. Masuda Y. Bull. Chem. Soc. Jpn.  2002,  75:  825 
  • 13l Caballero A. Sabo-Etienne S. Organometallics  2007,  26:  1191 
  • 13m Molinos E. Brayshaw SK. Kociok-Köhn G. Weller AS. Organometallics  2007,  26:  2370 
  • 13n Mkhalid IAI. Coapes RB. Edes SN. Coventry DN. Souza FES. Thomas RL. Hall JJ. Bi S.-W. Lin Z. Marder TB. Dalton Trans.  2008,  1055 
  • 14 Burke JM. Coates RB. Goeta AE. Howard JAK. Marder TB. Robins EG. Westcott SA. J. Organomet. Chem.  2002,  649:  199 
  • 15 Burgess K. van der Donk WA. Westcott SA. Marder TB. Baker RT. Calabrese JC. J. Am. Chem. Soc.  1992,  114:  9350 
  • 17a Pereira S. Srebnik M. Organometallics  1995,  14:  3127 
  • 17b Zheng B. Srebnik M. J. Org. Chem.  1995,  60:  486 
  • 17c Pereira S. Srebnik M. Tetrahedron Lett.  1996,  37:  3283 
  • 17d Ramachandran PV. Jennings MP. Brown HC. Org. Lett.  1999,  1:  1399 
  • 17e Ohmura T. Yamamoto Y. Miyaura N. J. Am. Chem. Soc.  2000,  122:  4990 
  • 17f Segarra AM. Claver C. Fernández E. Chem. Commun.  2001,  464 
  • 17g Hoffman RW. Krüger J. Brückner D. New J. Chem.  2001,  25:  102 
  • 17h Rubina M. Rubin M. Gevorgyan V. J. Am. Chem. Soc.  2003,  125:  7198 
  • 17i Yamamoto Y. Fujikawa R. Umemoto T. Miyaura N. Tetrahedron  2004,  60:  10695 
  • 17j Rubin M. Gevorgyan V. Synthesis  2004,  796 
  • 17k Lee T. Baik C. Jung I. Song KH. Kim S. Kim D. Kang SO. Ko J. Organometallics  2004,  23:  4569 
  • 17l Crudden CM. Hleba YB. Chen AC. J. Am. Chem. Soc.  2004,  126:  9200 
  • 17m Horino Y. Livinghouse T. Stan M. Synlett  2004,  2639 
  • 17n Wang YD. Kimball G. Prashad AS. Wang Y. Tetrahedron Lett.  2005,  46:  8777 
  • 17o Edwards DE. Crudden CM. Adv. Synth. Catal.  2005,  347:  50 
  • 17p Moteki SA. Wu D. Chandra KL. Reddy DS. Takacs JM. Org. Lett.  2006,  8:  3097 
  • 17q Hadebe SW. Robinson RS. Tetrahedron Lett.  2006,  47:  1299 
  • 17r Hadebe SW. Robinson RS. Eur. J. Org. Chem.  2006,  4898 
  • 17s Kinder RE. Widenhoefer RA. Org. Lett.  2006,  8:  1967 
  • 17t Ghebreyessus KY. Angelici RJ. Organometallics  2006,  25:  3040 
  • 17u Scurto AM. Leitner W. Chem. Commun.  2006,  3681 
  • 17v Onodera G. Nishibayashi Y. Uemura S. Organometallics  2006,  25:  35 
  • 17w Wechsler D. Rankin MA. McDonald R. Ferguson MJ. Schatte G. Stradiotto M. Organometallics  2007,  26:  6418 
  • 17x Moteki SA. Takacs JM. Angew. Chem. Int. Ed.  2008,  47:  894 
11

Si-DPP (R39030B) is available at SiliCycle (www.silicycle.com).

12

Experimental Procedure
In a typical experiment, a THF (0.5 mL) solution of Rh(acac)(coe)2 (8 mg, 0.019 mmol) was added to a THF (2 mL) slurry of Si-DPP (60 mg, 0.056 mmol), and the mixture was stirred for 5 h. To this mixture was added a THF (0.5 mL) solution of 2-vinylnaphthalene (135 mg, 0.87 mmol) followed by a THF (0.5 mL) solution of HBcat (126 mg, 1.05 mmol). The reaction was allowed to proceed for 18 h at which point the mixture was filtered through a small plug of Celite before solvent was removed under vacuum. The residual oil was dissolved in C6D6 (1 mL) and analyzed by multinuclear NMR spectroscopy.5a,¹0 Confirmation of product formation was carried out using GC-MS on products derived from a basic, oxidative workup.
Selected NMR Spectroscopic Data 4-MeOC6H4CH(Bcat)Me (i; R = OMe; Bcat): ¹H NMR (270 MHz, C6D6): δ = 2.74 [q, J = 7.7 Hz, CH(Bcat)CH3], 1.48 [d, J = 7.7 Hz, CH(Bcat)CH 3].
4-MeOC6H4CH2CH2 (Bcat) (ii; R = OMe; Bcat): ¹H NMR (270 MHz, C6D6): δ = 2.79 [t, J = 7.9 Hz, CH 2CH2 (Bcat)], 1.42 [t, J = 7.9 Hz, CH2CH 2 (Bcat)].
4-MeOC6H4CH=CH(Bcat) (iii; R = OMe; Bcat): ¹H NMR (270 MHz, C6D6): δ = 7.82 [d, J = 18.3 Hz, CH=CH(Bcat)], 6.34 [d, J = 18.3 Hz, CH=CH(Bcat)].
4-MeOC6H4CH2CH(Bcat)2 (iv; R = OMe; Bcat): ¹H NMR (270 MHz, C6D6): δ = 3.36 [d, J = 8.2 Hz, CH 2CH(Bcat)2], 2.11 [t, J = 8.2 Hz, CH2CH(Bcat)2].
4-FC6H4CH(Bcat)Me (i; R = F; Bcat): ¹H NMR (270 MHz, C6D6): δ = 2.60 [q, J = 7.7 Hz, CH(Bcat)CH3), 1.36 [d, J = 7.7 Hz, CH(Bcat)CH 3].
4-FC6H4CH=CH(Bcat) (iii; R = F; Bcat): ¹H NMR (270 MHz, C6D6): δ = 7.62 [d, J = 18.3 Hz, CH=CH(Bcat)], 6.23 [d, J = 18.3 Hz, CH=CH(Bcat)].
4-FC6H4CH2CH(Bcat)2 (iv; R = F; Bcat): ¹H NMR (270 MHz, C6D6): δ = 3.22 [d, J = 8.2 Hz, CH 2CH(Bcat)2], 1.99 [t, J = 8.2 Hz, CH2CH(Bcat)2].

16

Selected NMR Spectroscopic Data
4-MeOC6H4CH(Bpin)Me (i; R = OMe; Bpin): ¹H NMR (270 MHz, C6D6): δ = 2.56 [q, J = 7.7 Hz, CH(Bpin)CH3], 1.50 [d, J = 7.7 Hz, CH(Bpin)CH 3].
4-MeOC6H4CH2CH2(Bpin) (ii; R = OMe; Bpin): ¹H NMR (270 MHz, C6D6): δ = 2.87 [t, J = 7.9 Hz, CH 2CH2 (Bpin)], 1.12 [t, J = 7.9 Hz, CH2CH 2(Bpin)].
4-MeOC6H4CH=CH(Bpin) (iii; R = OMe; Bpin): ¹H NMR (270 MHz, C6D6): δ = 7.80 [d, J = 18.3 Hz, CH=CH(Bpin)], 6.40 [d, J = 18.3 Hz, CH=CH(Bpin)].
4-FC6H4CH(Bpin)Me (i; R = F; Bpin): ¹H NMR (270 MHz, C6D6): δ = 2.45 [q, J = 7.7 Hz, CH(Bpin)CH3], 1.38 [d, J = 7.7 Hz, CH(Bpin)CH 3].
4-FC6H4CH2CH2(Bpin) (ii; R = F; Bpin): ¹H NMR (270 MHz, C6D6): δ = 2.70 [t, J = 8.1 Hz, CH 2CH2 (Bpin)], 1.12 [t, J = 8.1 Hz, CH2CH 2(Bpin)].
4-FC6H4CH=CH(Bpin) (iii; R = F; Bpin): ¹H NMR (270 MHz, C6D6): δ = 7.60 [d, J = 18.5 Hz, CH=CH(Bpin)], 6.27 [d, J = 18.5 Hz, CH=CH(Bpin)].
4-FC6H4CH2CH(Bpin)2 (iv; R = F; Bpin): ¹H NMR (270 MHz, C6D6): δ = 3.11 [d, J = 8.2 Hz, CH 2CH(Bpin)2], 1.50 [t, J = 8.2 Hz, CH2CH(Bpin)2].
PhCH(Bpin)Me (i; R = H; Bpin): ¹H NMR (270 MHz, C6D6): δ = 2.51 [q, J = 7.4 Hz, CH(Bpin)CH3], 1.42 [d, J = 7.4 Hz, CH(Bpin)CH 3].
PhCH2CH2(Bpin) (ii; R = H; Bpin): ¹H NMR (270 MHz, C6D6): δ = 2.80 [t, J = 8.0 Hz, CH 2CH2 (Bpin)], 1.03 [t, J = 8.0 Hz, CH2CH 2 (Bpin)].
PhCH=CH(Bpin) (iii; R = H; Bpin): ¹H NMR (270 MHz, C6D6): δ =7.70 [d, J = 18.5 Hz, CH=CH(Bpin)], 6.40 [d, J = 18.5 Hz, CH=CH(Bpin)].
PhCH2CH(Bpin)2 (iv; R = H; Bpin): ¹H NMR (270 MHz, C6D6): δ = 3.20 [d, J = 8.0 Hz, CH 2CH(Bpin)2], 1.30 [t, J = 8.0 Hz, CH2CH(Bpin)2].

18

Selected NMR Spectroscopic Data
2,4,6-Me3C6H2CH(Bcat)Me (v): ¹H NMR (270 MHz, C6D6): δ = 2.90 [q, J = 7.7 Hz, CH(Bcat)CH3], 1.42 [d, J = 7.7 Hz, CH(Bcat)CH 3].
2,4,6-Me3C6H2CH2CH2(Bcat) (vi): ¹H NMR (270 MHz, C6D6): δ = 2.81 [t, J = 7.9 Hz, CH 2CH2 (Bcat)], 1.31 [t, J = 7.9 Hz, CH2CH 2 (Bcat)].
2,4,6-Me3C6H2CH=CH(Bcat) (vii): ¹H NMR (270 MHz, C6D6): δ = 7.90 [d, J = 18.3 Hz, CH=CH(Bcat)], 6.10 [d, J = 18.3 Hz, CH=CH(Bcat)].
2,4,6-Me3C6H2CH2CH(Bcat)2 (viii): ¹H NMR (270 MHz, C6D6): δ = 3.41 [d, J = 8.2 Hz, CH 2CH(Bcat)2], 2.11 [t, J = 8.2 Hz, CH2CH(Bcat)2].