References and Notes
1a
Kolb HC.
Sharpless KB.
Drug Discovery Today
2003,
8:
1128
1b
Kolb HC.
Finn MG.
Sharpless KB.
Angew. Chem. Int. Ed.
2001,
40:
2004
1c
Gil MV.
Arevalo MJ.
Lopez O.
Synthesis
2007,
1589
1d
Moses JE.
Moorhouse AD.
Chem.
Soc. Rev.
2007,
36:
1249
1e
Bock VD.
Hiemstra H.
Maarseveen JHV.
Eur. J. Org. Chem.
2006,
51
1f
Genin MJ.
Allwine DA.
Anderson DJ.
Barbachyn MR.
Emmert DE.
Garmon SA.
Graber DR.
Grega KC.
Hester JB.
Hutchinson DK.
Morris J.
Reischer RJ.
Ford CW.
Zurenco
GE.
Hamel JC.
Schaadt RD.
Stapert D.
Yagi BH.
J. Med. Chem.
2000,
43:
953
1g
Pagliai F.
Pirali T.
Grosso ED.
Brisco RD.
Tron GC.
Sorba G.
Genazzani AA.
J.
Med. Chem.
2006,
49:
467
1h
Brik A.
Muldoon J.
Lin YC.
Elder JH.
Goodsell DS.
Olson AJ.
Fokin VV.
Sharpless KB.
Wong CH.
ChemBioChem
2003,
4:
1246
1i
Brockunier LL.
Parmee ER.
Ok HO.
Candelore MR.
Cascieri MA.
Colwell LF.
Deng L.
Feeney WP.
Forrest MJ.
Hom GJ.
MacIntyre DE.
Tota L.
Wyvratt MJ.
Fischer MH.
Weber AE.
Bioorg. Med. Chem. Lett.
2000,
10:
2111
1j
Velazquez S.
Alvarez R.
Perez C.
Gago F.
De Clercq E.
Balzarini J.
Camarasa MJ.
Antiviral
Chem. Chemother.
1998,
9:
481.
2a
Fan WQ.
Katritzky AR. In Comprehensive Heterocyclic
Chemistry II
Vol. 4:
Katritzky AR.
Rees
CW.
Scriven CWV.
Oxford;
Elsevier:
1996.
p.
1-126
2b
Thibault RJ.
Takizawa K.
Lowenheilm P.
Helms B.
Mynar JL.
Frechet JMJ.
Hawker CJ.
J. Am. Chem.
Soc.
2006,
128:
12084
2c
Abu-Orabi ST.
Alfah MA.
Jibril I.
Marii FM.
Ali AAS.
J. Heterocycl.
Chem.
1989,
26:
1461
2d
Scriven EFV.
Turnbull K.
Chem.
Rev.
1988,
88:
297
2e
Maksikova AV.
Serebryakova ES.
Tikhonova LG.
Vereshagin LI.
Chem. Heterocycl. Compd.
1980,
1284
2f
Kacprzak K.
Synlett
2005,
943
2g
Lubineau A.
Auge J.
Queneau Y.
Synthesis
1994,
741
2h
Li CJ.
Chan TH.
Organic Reactions in Aqueous Media
New
York;
Wiley:
1997.
2i
Lindstrom UM.
Chem. Rev.
2002,
102:
2751
3a
Horne WS.
Yadav MK.
Stout CD.
Ghadiri MR.
J. Am. Chem. Soc.
2004,
126:
15366
3b
Dalvie DK.
Kalgutkar AS.
Khojasteh-Bakht SC.
Obach RS.
O’Donnell JP.
Chem.
Res. Toxicol.
2002,
15:
269
3c
Speers AE.
Cravatt BF.
Chem.
Biol.
2004,
11:
535
3d
Lee LV.
Mitchell ML.
Huang S.-J.
Fokin VV.
Sharpless KB.
Wong C.-H.
J. Am. Chem.
Soc.
2003,
125:
9588
4a
Polshettiwar V.
Varma RS.
Chem.
Soc. Rev.
2008,
1546
4b
Polshettiwar V.
Varma RS.
Acc. Chem. Res.
2008,
41:
629
4c
Adams DJ.
Dyson PJ.
Tavener SJ.
Chemistry in
Alternative Reaction Media
Wiley;
Chichester:
2004.
4d
Matlack AS.
Introduction to Green Chemistry
Marcel
Dekker Inc.;
New York:
2001.
5
Anastas PT.
Warner JC.
Green
Chemistry: Theory and Practice
Oxford University
Press;
Oxford:
1998.
6
Zhu J.
Bienayme H.
Multicomponent
Reactions
1st ed.:
Wiley-VCH;
Weinheim:
2005.
7a
Huisgen R. In 1,3-Dipolar Cycloaddition Chemistry
Padwa A.
Wiley;
New
York:
1984.
p.1-176
7b
Padwa A. In Comprehensive Organic Synthesis
Vol.
4:
Trost
BM.
Pergamon;
Oxford:
1991.
p.1069-1109
7c
Smith CD.
Baxendale IR.
Lanners S.
Hayward
JJ.
Smith SC.
Ley SV.
Org.
Biomol. Chem.
2007,
5:
1559
8
Tanemura K.
Suzuki T.
Nishida Y.
Satsumabayashi K.
Horaguchi T.
Chem.
Commun.
2004,
470
9a
Marsh FD.
J. Org. Chem.
1972,
37:
2966
9b
Priebe H.
Braathen GO.
Klaeboe P.
Neelsen C.
Priebe H.
Acta
Chem. Scand. Ser. B
1984,
38:
895
9c
Smith PAS.
Derivatives
of Hydrazine and Other Hydronitrogens Having N-N Bonds
Benjamin-Cummings;
Reading
(MA):
1983.
p.263
10
General Procedure
To
a solution of α-halo compound 1 (1.0
mmol), NaN3 (1.2 mmol), and terminal acetylene (1.0 mmol)
in aq PEG 400 (2 mL) was added sodium ascorbate (19.8 mg, 10 mol%)
and 1 M CuSO4 (50 µL, 5 mol%) solution.
The reaction mixture was allowed to stir at r.t. for 30 min. After
the reaction was complete, as indicated by TLC, the solid product
was filtered, washed, and dried to afford pure product.
Analytical Data for Selected Compounds
Compound 2a:7c IR (KBr): 1690 (CO) cm-¹. ¹H
NMR (200 MHz, CDCl3): δ = 8.04-8.00
(2 H, m), 7.95 (1 H, s), 7.89-7.84 (2 H, m), 7.73-7.65
(1 H, m), 7.59-7.31 (5 H, m), 5.91 (2 H, s). ¹³C
NMR (50 MHz, CDCl3): δ = 195.0
(CO), 152.4, 139.0, 138.2, 134.5, 133.5, 133.2, 132.7, 132.5, 130.1, 126.4,
59.9. MS (EI): m/z calcd for
C16H14N3O [M + H]+: 264.1;
found: 264.3.
Compound 2h: IR
(KBr): 1680 (CO) cm-¹. ¹H
NMR (400 MHz, DMSO-d
6): δ = 8.53
(1 H, s), 8.11 (2 H, d, J = 8.0
Hz), 7.88 (2 H, d, J = 8.0
Hz), 7.70 (2 H, d, J = 8.0
Hz), 7.48-7.45 (2 H, m), 7.37-7.35 (1 H, m), 6.27
(2 H, s). ¹³C NMR (100 MHz, DMSO-d
6): δ = 191.4
(CO), 146.3, 139.2, 132.8, 130.7, 130.1, 129.1, 128.9, 127.9, 125.1,
123.0, 56.0. MS (EI): m/z calcd
for C16H13ClN3O [M + H]+:298.0747;
found: 297.9593.
Compound 2l: IR (KBr): 1720 (CO) cm-¹. ¹H
NMR (400 MHz, DMSO-d
6): δ = 8.56
(1 H, s), 7.85 (2 H, d, J = 8.0 Hz),
7.47-7.44 (2 H, m), 7.35-7.32 (1 H, m), 5.76-5.71
(1
H, m), 2.75-2.67 (1 H, m), 2.45-2.32 (3 H, m),
2.11-2.09 (1 H, m), 1.96-1.92 (2 H, m), 1.76-1.68
(1 H, m). ¹³C NMR (100 MHz, DMSO-d
6): δ = 204.1
(CO), 145.9, 130.8, 128.9, 127.8, 125.0, 121.3, 66.8, 40.4, 33.4,
26.4, 23.6. MS (EI):
m/z calcd
for C14H16N3O [M + H]+:
242.1293; found: 242.0473.
Compound 2o: IR (KBr): 1685 (CO) cm-¹. ¹H
NMR (400 MHz, DMSO-d
6): δ = 9.17
(1 H, s), 8.61 (1 H, s), 8.20 (2 H, d, J = 8.0
Hz), 8.15 (1 H, d, J = 8.0
Hz), 8.02 (1 H, d, J = 8.0 Hz),
7.90 (2 H, d, J = 8.0
Hz), 7.80-7.76 (1 H, m), 7.69-7.65 (2 H, m), 7.49-7.33
(5 H, m), 6.26 (2 H, s). ¹³C NMR (100 MHz,
DMSO-d
6): δ = 187.9
(CO), 146.3, 136.3, 135.4, 134.8, 133.9, 130.7, 130.2, 128.9, 127.9,
127.3, 126.8, 126.2, 125.2, 125.1, 123.2, 122.0, 117.5, 113.1, 56.0.
MS (EI): m/z calcd for C24H19N4O3S [M + H]+:
443.1178; found: 443.0073.
Compound 2p:
IR (KBr): 1759 (CO) cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.92-7.82
(3 H, m), 7.42-7.27 (3 H, m), 5.21 (2 H, s), 3.80 (3 H,
s). ¹³C NMR (75 MHz, CDCl3): δ = 166.8
(CO), 148.2, 130.4, 128.9, 128.3, 125.8, 121.1, 53.0, 50.8. MS (EI): m/z calcd for C11H12N3O2 [M + H]+:
218.1; found: 218.3.
Compound 2q:
IR (KBr): 1651 (CO) cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 8.03 (1 H,
s), 7.85-7.83 (2 H, m), 7.44-7.39 (2 H, m), 7.39-7.30
(1 H, m), 5.23 (2 H, s), 3.46-3.39 (4 H, m), 1.25 (3 H,
t, J = 7.15
Hz), 1.15 (3 H, t, J = 7.10 Hz). ¹³C
NMR (75 MHz, CDCl3): δ = 164.0 (CO),
148.0, 130.7, 128.8, 128.1, 125.8, 121.4, 50.9, 42.0, 41.0, 14.4, 12.8.
MS (EI): m/z calcd for C14H19N4O [M + H]+:
259.2; found: 259.3.
Compound 2r:
IR (KBr): 2286 (CN) cm-¹. ¹H
NMR (200 MHz, CDCl3): δ = 8.00 (1 H,
s), 7.86-7.81 (2 H, m), 7.51-7.38 (3 H, m), 5.40
(2 H, s). ¹³C NMR (50 MHz, CDCl3):
δ = 149.6,
129.9, 129.4, 129.3, 126.3, 120.3, 113.1, 38.0. MS (EI): m/z calcd for C10H9N4 [M + H]+:
185.1; found: 185.2.
Compound 2s:
IR (KBr): 1693 (CO) cm-¹. ¹H
NMR (300 MHz, DMSO-d
6): δ = 7.86
(2 H, d, J = 8.49
Hz), 7.68 (2 H, d, J = 8.49
Hz), 7.51 (1 H, s), 5.79 (2 H, s), 3.65-3.58 (2 H, m),
2.96-2.91 (2 H, m), 2.24-2.15 (2 H, m). ¹³C
NMR (75 MHz, CDCl3): δ = 189.7 (CO),
146.8, 132.7, 132.6, 130.0, 129.6, 123.0, 55.3, 44.2, 31.8, 22.7.
MS (EI): m/z calcd for C13H14BrClN3O [M + H]+:
342.0; found: 342.0.
11a
Chen J.
Spear SK.
Huddleston JG.
Rogers RD.
Green Chem.
2005,
7:
64
11b
Zaslavsky BY.
Aqueous Two-Phase Partitioning:
Physical Chemistry and Bioanalytical Applications
Marcel
Dekker;
New York:
1995.
11c
Yalkowsky SH.
Banerjee S.
Aqueous Solubility: Methods of Estimation
for Organic Compounds
Marcel Dekker;
New
York:
1992.