Abstract
A highly efficient 2,2,6,6-tetramethylpiperidin-1-yloxy (TEMPO)
catalyzed alcohol oxidation system using recyclable 1-chloro-1,2-benziodoxol-3(1H )-one as the terminal oxidant in ethyl acetate,
which is an environmentally friend organic solvent, at room temperature
has been developed. A variety of alcohols can be oxidized to their
corresponding carbonyl compounds in high to excellent yields. Various
heteroaromatic rings and C=C bonds are well tolerated under
the reaction conditions. 1-Chloro-1,2-benziodoxol-3(1H )-one can be easily recycled after simple
solid/liquid-phase separation and the subsequent regeneration
sequence. In addition, a safe, very convenient, large-scale, and
high-yielding procedure for the preparation of 1-chloro-1,2-benziodoxol-3(1H )-one from 2-iodobenzoic acid has been
developed using sodium chlorite as the stoichiometric oxidant
in dilute hydrochloric acid at room temperature.
Key words
alcohol - hypervalent iodine - oxidation - recyclable - TEMPO
References
<A NAME="RF20408SS-1A">1a </A>
Larock RC.
Comprehensive Organic
Transformations
2nd ed.:
Wiley;
New
York:
1999.
<A NAME="RF20408SS-1B">1b </A>
Tojo G.
Fernández M.
Oxidation of Alcohols
to Aldehydes and Ketones: A Guide to Current Common Practice
Springer;
New
York:
2006.
For some reviews on hypervalent
iodine reagents, see:
<A NAME="RF20408SS-2A">2a </A>
Banks DF.
Chem. Rev.
1966,
66:
243
<A NAME="RF20408SS-2B">2b </A>
Stang PJ.
Zhdankin VV.
Chem.
Rev.
1996,
96:
1123
<A NAME="RF20408SS-2C">2c </A>
Varvoglis A.
Hypervalent Iodine in Organic Synthesis
Academic Press;
San
Diego:
1997.
<A NAME="RF20408SS-2D">2d </A>
Stang PJ.
Zhdankin VV.
Chem.
Rev.
2002,
102:
2523
<A NAME="RF20408SS-2E">2e </A>
Hypervalent
Iodine Chemistry
Wirth T.
Springer;
Heidelberg:
2003.
<A NAME="RF20408SS-2F">2f </A>
Tohma H.
Kita Y.
Adv. Synth. Catal.
2004,
346:
111
<A NAME="RF20408SS-2G">2g </A>
Wirth T.
Angew.
Chem. Int. Ed.
2005,
44:
3656
<A NAME="RF20408SS-2H">2h </A>
Matveeva ED.
Proskurnina MV.
Zefirov NS.
Heteroat. Chem.
2006,
17:
595
<A NAME="RF20408SS-3A">3a </A>
Ley SV.
Thomas AW.
Finch H.
J. Chem. Soc., Perkin Trans.
1
1999,
669
<A NAME="RF20408SS-3B">3b </A>
Tohma H.
Morioka H.
Harayama Y.
Hashizume M.
Kita Y.
Tetrahedron
Lett.
2001,
42:
6899
<A NAME="RF20408SS-3C">3c </A>
Togo H.
Sakuratani K.
Synlett
2002,
1966
<A NAME="RF20408SS-3D">3d </A>
Sakuratani K.
Togo H.
Synthesis
2003,
21
<A NAME="RF20408SS-3E">3e </A>
Shang Y.
But TYS.
Togo H.
Toy PH.
Synlett
2007,
67
<A NAME="RF20408SS-3F">3f </A>
Jang H.-S.
Chung W.-J.
Lee Y.-S.
Tetrahedron
Lett.
2007,
48:
3731
<A NAME="RF20408SS-3G">3g </A>
Ladziata U.
Zhdankin VV.
Synlett
2007,
527
<A NAME="RF20408SS-3H">3h </A>
Karimov RR.
Kazhkenov Z.-GM.
Modjewski MJ.
Peterson EM.
Zhdankin VV.
J.
Org. Chem.
2007,
72:
8149
<A NAME="RF20408SS-4A">4a </A>
Tohma H.
Maruyama A.
Maeda A.
Maegawa T.
Dohi T.
Shiro M.
Morita T.
Kita Y.
Angew. Chem.
Int. Ed.
2004,
43:
3595
<A NAME="RF20408SS-4B">4b </A>
Dohi T.
Maruyama A.
Yoshimura M.
Morimoto K.
Tohma H.
Shiro M.
Kita Y.
Chem.
Commun.
2005,
2205
<A NAME="RF20408SS-5A">5a </A>
Moroda A.
Togo H.
Tetrahedron
2006,
62:
12408
<A NAME="RF20408SS-5B">5b </A>
Telvekar VN.
Herlekar OP.
Synth.
Commun.
2007,
37:
859
<A NAME="RF20408SS-6A">6a </A>
Rocaboy C.
Gladysz JA.
Chem.
Eur. J.
2003,
9:
88
<A NAME="RF20408SS-6B">6b </A>
Tesevic V.
Gladysz JA.
J. Org. Chem.
2006,
71:
7433
<A NAME="RF20408SS-7A">7a </A>
Yusubov MS.
Drygunova LA.
Zhdankin VV.
Synthesis
2004,
2289
<A NAME="RF20408SS-7B">7b </A>
Yusubov MS.
Gilmkhanova MP.
Zhdankin VV.
Kirschning A.
Synlett
2007,
563
<A NAME="RF20408SS-7C">7c </A>
Kirschning A.
Yusubov MS.
Yusubova RY.
Chi K.-W.
Park JY.
Beilstein J. Org. Chem.
2007,
3:
19
<A NAME="RF20408SS-7D">7d </A>
Yusubov MS.
Funk TV.
Chi K.-W.
Cha E.-H.
Kim GH.
Kirschning A.
Zhdankin VV.
J. Org. Chem.
2008,
73:
295
<A NAME="RF20408SS-8">8 </A>
Zhdankin VV.
Curr.
Org. Synth.
2005,
2:
121
<A NAME="RF20408SS-9A">9a </A>
Zhao X.-F.
Zhang C.
Synthesis
2007,
551
<A NAME="RF20408SS-9B">9b </A>
Li
X.-Q.
Zhao X.-F.
Zhang C.
Synthesis
2008,
2589
<A NAME="RF20408SS-10">10 </A>
Shibuya M.
Tomizawa M.
Suzuki I.
Iwabuchi Y.
J. Am. Chem. Soc.
2006,
128:
8412
For the preparation of 1 , see:
<A NAME="RF20408SS-11A">11a </A>
Meyer V.
Wachter W.
Ber. Dtsch. Chem. Ges.
1892,
25:
2632
<A NAME="RF20408SS-11B">11b </A>
Willgerodt C.
J.
Prakt. Chem.
1894,
49:
466
<A NAME="RF20408SS-11C">11c </A>
Amey RL.
Martin JC.
J.
Org. Chem.
1979,
44:
1779
For the crystal structure of 1 ,
see:
<A NAME="RF20408SS-11D">11d </A>
Prout K.
Stevens NM.
Coda A.
Tazzoli V.
Shaw RA.
Demir T.
Z. Naturforsch., B: Chem. Sci.
1976,
31:
687
<A NAME="RF20408SS-11E">11e </A>
Takahashi M.
Nanba H.
Kitazawa T.
Takeda M.
Ito Y.
J.
Coord. Chem.
1996,
37:
371
For the chlorination of aromatic hydrocarbons, see:
<A NAME="RF20408SS-11F">11f </A>
Andrews LJ.
Keefer RM.
J.
Am. Chem. Soc.
1959,
81:
4218
For the application in the mechanism study on the cleavage
of toxic phosphate, see:
<A NAME="RF20408SS-11G">11g </A>
Moss RA.
Zhang H.
J. Am. Chem. Soc.
1994,
116:
4471
<A NAME="RF20408SS-12">12 </A>
Sheldon RA.
Green
Chem.
2005,
7:
267 ;
or see http://en.wikipedia.org/wiki/Ethyl_acetate
<A NAME="RF20408SS-13">13 </A>
De Mico A.
Margarita R.
Parlanti L.
Vescovi A.
Piancatelli G.
J.
Org. Chem.
1997,
62:
6974
Iodanyl radical A has
been proposed before, generated from homolytic cleavage of I-X
bonds (X = N, O) of analogues of 1 , ending up with 2-iodobenzoic acid, see:
<A NAME="RF20408SS-14A">14a </A>
Zhdankin VV.
Krasutsky AP.
Kuehl CJ.
Simonsen AJ.
Woodward JK.
Mismash B.
Bolz JT.
J. Am. Chem. Soc.
1996,
118:
5192
<A NAME="RF20408SS-14B">14b </A>
Ochiai M.
Ito T.
Takahashi H.
Nakanishi A.
Toyonari M.
Sueda T.
Goto S.
Shiro M.
J. Am. Chem. Soc.
1996,
118:
7716
<A NAME="RF20408SS-14C">14c </A>
Barluenga J.
Campos-Gómez E.
Rodríguez D.
González-Bobes F.
González JM.
Angew.
Chem. Int. Ed.
2005,
44:
5851
<A NAME="RF20408SS-15A">15a </A>
Hunter DH.
Barton DHR.
Motherwell WJ.
Tetrahedron
Lett.
1984,
25:
603
<A NAME="RF20408SS-15B">15b </A>
Hunter DH.
Racok JS.
Rey AW.
Ponce YZ.
J.
Org. Chem.
1988,
53:
1278
<A NAME="RF20408SS-16A">16a </A>
De Nooy AEJ.
Beswmer AC.
Van Bekkum H.
Synthesis
1996,
1153
<A NAME="RF20408SS-16B">16b </A>
Adam W.
Saha-Möller CR.
Ganeshpure PA.
Chem. Rev.
2001,
101:
3499
<A NAME="RF20408SS-16C">16c </A>
Vogler T.
Studer A.
Synthesis
2008,
1979
<A NAME="RF20408SS-17">17 </A>
Radical A or A′ was suggested to be a poor
oxidant towards TEMPO by trapping experiments using TEMPO performed by
Ochiai et al. in their oxidation of the benzylic and allylic ether
by stable hypervalent (tert -butylperoxy)iodanes
via benzylic and allylic radicals in which radical A or A′ was employed as a highly efficient
hydrogen-abstracting species (ref. 14b). On the other hand, the
oxidation of TEMPO by chlorine atom is well established (refs. 9a
and 15). Therefore, we proposed that radical A′ could
oxidize hydroxylamine C to TEMPO via a
hydrogen-abstracting step.
For pyridine used as a nucleophile
onto iodine(III) reagents in the presence of TMSOTf, see:
<A NAME="RF20408SS-18A">18a </A>
Weiss R.
Seubert J.
Angew. Chem. Int. Ed.
1994,
33:
891
<A NAME="RF20408SS-18B">18b </A>
Zhdankin VV.
Koposov AY.
Yashin NV.
Tetrahedron Lett.
2002,
43:
5735
<A NAME="RF20408SS-18C">18c </A>
However, the possibility
of pyridine being a nucleophile in the present reaction could be
ruled out since oxidant 1 was recovered
more than 90% after stirring the mixture of 1 and
pyridine with or without TEMPO in EtOAc for much longer time (24
h) than that required for the alcohol oxidation (0.5 to 9 h). Notably,
other organic bases such as triethylamine and DMAP which could also
be used as acid scavengers destroyed the oxidant 1 which
was confirmed by two control experiments.
<A NAME="RF20408SS-19">19 </A> When bleach was used instead of
NaClO2 , a mixture containing 1 ,
and other hard to separate byproducts was obtained. The melting
point of obtained products was from 167 ˚C to 234 ˚C,
very different from that of 1 (Lit.¹¹c 168-171 ˚C).
Indicated by the melting points, one of the byproducts may be 1-hydroxy-1,2-benziodoxol-3
(1H )-one (IBA, Lit.¹9 mp
231-232 ˚C). It was reported that IBA could be
generated from hydrolysis of 1 in strong
basic media see:
Baker GP.
Mann FG.
Sheppard N.
Tetlow AJ.
J. Chem. Soc.
1965,
3721 ; Since the pH value of bleach is 13-14,
IBA could be generated from 1 at the beginning
of the oxidizing process with bleach as the oxidant
<A NAME="RF20408SS-20">20 </A>
Constable DJC.
Dunn PJ.
Hayler JD.
Humphrey GR.
Leazer JL.
Linderman RJ.
Lorenz K.
Manley J.
Pearlman BA.
Wells A.
Zaks A.
Zhang TY.
Green Chem.
2007,
9:
411
<A NAME="RF20408SS-21">21 </A>
Velusamy S.
Ahamed M.
Punniyamurthy T.
Org.
Lett.
2004,
6:
4821
<A NAME="RF20408SS-22">22 </A>
Bertini V.
Lucchesini F.
Pocci M.
De Munno A.
Heterocycles
1995,
41:
675
<A NAME="RF20408SS-23">23 </A>
Berube M.
Poirier D.
Org. Lett.
2004,
6:
3127
<A NAME="RF20408SS-24">24 </A>
Inokuchi T.
Matsumoto S.
Torii S.
J.
Org. Chem.
1991,
56:
2416