Synlett 2009(4): 573-576  
DOI: 10.1055/s-0028-1087917
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A Ruthenium-Mediated Asymmetric Hydrogenation Approach to the Synthesis of Discodermolide Subunits

Christophe Roche, Rémi Le Roux, Mansour Haddad, Phannarath Phansavath*, Jean-Pierre Genêt*
Laboratoire de Synthèse Sélective Organique et Produits Naturels UMR 7573 CNRS, Ecole Nationale Supérieure de Chimie de Paris, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05, France
Fax: +33(1)44071062; e-Mail: phannarath-phansavath@enscp.fr; e-Mail: jean-pierre-genet@enscp.fr;
Weitere Informationen

Publikationsverlauf

Received 14 October 2008
Publikationsdatum:
16. Februar 2009 (online)

Abstract

The C1-C7 and C9-C14 subunits of (+)-discodermolide have been synthesized using ruthenium-SYNPHOS-mediated asymmetric hydrogenation reactions of β-keto esters to set the C3, C5 and C11 hydroxy-bearing stereocenters with very high levels of diastereoselectivity.

    References and Notes

  • 1a Gunasekera SP. Gunasekera M. Longley RE. Schulte GK. J. Org. Chem.  1990,  55:  4912 ; correction: J. Org. Chem. 1991, 56, 1346
  • 1b Gunasekera SP. Paul GK. Longley RE. Isbruker RA. Pomponi SA. J. Nat. Prod.  2002,  65:  1643 
  • 2a Longley RE. Caddigan D. Harmony D. Gunasekera M. Gunasekera SP. Transplantation  1991,  52:  650 
  • 2b Longley RE. Caddigan D. Harmony D. Gunasekera M. Gunasekera SP. Transplantation  1991,  52:  656 
  • 3a Hung DT. Chen J. Schreiber SL. Chem. Biol.  1996,  3:  287 
  • 3b ter Haar E. Kowalski RJ. Hamel E. Lin CM. Longley RE. Gunasekera SP. Rosenkranz HS. Day BW. Biochemistry  1996,  35:  243 
  • 3c Klein LE. Freeze BS. Smith AB. Horwitz SB. Cell Cycle  2005,  4:  501 
  • 4a Huang GS. Lopez-Barcons L. Freeze BS. Smith AB. Goldberg GL. Horwitz SB. McDaid HM. Clin. Cancer Res.  2006,  12:  298 
  • 4b Honore S. Kamath K. Braguer D. Horwitz SB. Wilson L. Briand C. Jordan MA. Cancer Res.  2004,  64:  4957 
  • 4c Martello LA. McDaid HM. Regl DL. Yang C.-PH. Meng D. Pettus TRR. Kaufman MD. Arimoto H. Danishefsky SJ. Smith AB. Horwitz SB. Clin. Cancer Res.  2000,  6:  1978 
  • 4d Kowalsky RJ. Giannakakou P. Gunasekera SP. Longley RE. Day BW. Hamel E. Mol. Pharmacol.  1997,  52:  613 
  • 5 Smith AB. Freeze BS. LaMarche MJ. Sager J. Kinzler KW. Vogelstein B. Bioorg. Med. Chem. Lett.  2005,  15:  3623 
  • 6a For a review of the total syntheses prior to 2003: Paterson I. Florence GJ. Eur. J. Org. Chem.  2003,  2193 
  • 6b For a recent review on syntheses, construction and biological evaluation of analogues: Smith AB. Freeze BS. Tetrahedron  2008,  64:  261 
  • 6c For a recent review on total syntheses of discodermolide and dictyostatin: Florence GJ. Gardner NM. Paterson I. Nat. Prod. Rep.  2008,  25:  342 
  • 6d

    For references to synthetic approaches to discodermolide, see ref. 6b.

  • 7a Labeeuw O. Blanc D. Phansavath P. Ratovelomanana-Vidal V. Genet J.-P. Eur. J. Org. Chem.  2004,  2352 
  • 7b Le Roux R. Desroy N. Phansavath P. Genet J.-P. Synlett  2005,  429 
  • 7c Roche C. Desroy N. Haddad M. Phansavath P. Genet J.-P. Org. Lett.  2008,  10:  3911 
  • Synthetic approaches to discodermolide involving C1-C7 lactone subunit:
  • 8a Miyazawa M. Oonuma S. Maruyama K. Miyashita M. Chem. Lett.  1997,  26:  1191 
  • 8b Misske AM. Hoffman HMR. Tetrahedron  1999,  55:  4315 
  • 8c Yadav JS. Abraham S. Reddy MM. Sabitha G. Sankar AR. Kunwar AC. Tetrahedron Lett.  2001,  42:  4713 
  • 8d Day BW. Kangani CO. Avor KS. Tetrahedron: Asymmetry  2002,  13:  1161 
  • For reviews on Ru-catalyzed asymmetric hydrogenation, see:
  • 9a Ohkuma T. Kitamura M. Noyori R. In Catalytic Asymmetric Synthesis   2nd ed.:  Ojima I. Wiley-VCH; New York: 2000.  p.1 
  • 9b Noyori R. Angew. Chem. Int. Ed.  2002,  41:  2008 
  • 9c Kitamura M. Noyori R. In Ruthenium in Organic Synthesis   Murahashi S.-i. Wiley-VCH; Weinheim: 2004.  p.3 
  • 9d Genet J.-P. Acc. Chem. Res.  2003,  36:  908 
  • 10a Duprat de Paule S. Champion N. Ratovelomanana-Vidal V. Genet J.-P. Dellis P.   , 
  • 10b Duprat de Paule S. Jeulin S. Ratovelomanana-Vidal V. Genet J.-P. Champion N. Dellis P. Tetrahedron Lett.  2003,  44:  823 
  • 10c Duprat de Paule S. Jeulin S. Ratovelomanana-Vidal V. Genet J.-P. Champion N. Dellis P. Eur. J. Org. Chem.  2003,  1931 
  • 10d Duprat de Paule S. Jeulin S. Ratovelomanana-Vidal V. Genet J.-P. Champion N. Deschaux G. Dellis P. Org. Process Res. Dev.  2003,  7:  399 
  • 11a Rathke MW. Lindert A. J. Am. Chem. Soc.  1971,  93:  2318 
  • 11b Wolberg M. Ji A. Hummel W. Müller M. Synthesis  2001,  937 
  • 12 Genet J.-P. Pinel C. Ratovelomanana-Vidal V. Mallart S. Cano de Andrade MC. Laffitte JA. Tetrahedron: Asymmetry  1994,  5:  665 
  • 13a Fráter G. Helv. Chim. Acta  1979,  62:  2825 
  • 13b Seebach D. Wasmuth D. Helv. Chim. Acta  1980,  63:  197 
  • 14 Chen J. Wang T. Zhao K. Tetrahedron Lett.  1994,  35:  2827 
  • 15a Smith AB. Beauchamp TJ. LaMarche MJ. Kaufman MD. Qiu YP. Arimoto H. Jones DR. Kobayashi K. J. Am. Chem. Soc.  2000,  122:  8654 
  • 15b For an investigation of the mechanism of this transformation, see: Harimoto H. Kaufman MD. Kobayashi K. Qiu Y. Smith AB. Synlett  1998,  765 
  • 16 Marshall JA. Johns BA. J. Org. Chem.  1998,  63:  7885 
  • 17 Mickel SJ. Sedelmeier GH. Niederer D. Schuerch F. Grimler D. Koch G. Daeffler R. Osmani A. Hirni A. Schaer K. Gamboni R. Bach A. Chaudhary A. Chen S. Chen W. Hu B. Jagoe CT. Kim H.-Y. Kinder FR. Liu Y. Lu Y. McKenna J. Prashad M. Ramsey TM. Repic O. Rogers L. Shieh W.-C. Wang R.-M. Waykole L. Org. Process Res. Dev.  2004,  8:  101 
  • 20 Tanino K. Arakawa K. Satoh M. Iwata Y. Miyashita M. Tetrahedron Lett.  2006,  47:  861 
  • 21a Ikariya T. Ishii Y. Kawano H. Arai T. Saburi M. Yoshikawa S. Akutagawa S. J. Chem. Soc., Chem. Commun.  1985,  922 
  • 21b Ohta T. Tonomura Y. Nozaki K. Takaya H. Mashima K. Organometallics  1996,  15:  1521 
  • 21c Mashima K. Nakamura T. Matsuo Y. Tani K. J. Organomet. Chem.  2000,  607:  51 
  • 22 Jeulin S. Champion N. Dellis P. Ratovelomanana-Vidal V. Genet J.-P. Synthesis  2005,  3666 
18

Spectroscopic Data for Compound 2
[α]D ²5 +3.6 (c 1.0, CHCl3). ¹H NMR (300 MHz, CDCl3): δ = 5.22 (dq, J = 9.1, 1.1 Hz, 1 H), 4.32 (dd, J = 7.0, 4.1 Hz, 1 H), 2.64 (qd, J = 7.1, 4.1 Hz, 1 H), 2.43-2.50 (m, 1 H), 2.42 (d, J = 1.1 Hz, 3 H), 1.45 (s, 9 H), 1.19 (d, J = 7.1 Hz, 3 H), 1.10 (br s, 18 H), 0.98-1.15 (m, 3 H), 1.01 (d, J = 7.0 Hz,
3 H). ¹³C NMR (75 MHz, CDCl3): δ = 173.0, 137.6, 100.3, 80.2, 75.7, 47.1, 45.3, 33.7, 28.1, 18.3, 16.1, 13.1, 10.9.
IR (film): 1732, 1640, 1257, 883 cm. MS (DCI/NH3):
m/z = 551 [M + H]+, 472 [M + NH4 t-Bu]+.

19

Spectroscopic Data for Compound 10
[α]D ²5 +5.5 (c 1.05, CHCl3). ¹H NMR (300 MHz, CDCl3): δ = 6.23 (d, J = 9.8 Hz, 1 H), 4.28 (dd, J = 6.8, 4.1 Hz, 1 H), 2.52-2.67 (m, 2 H), 1.47 (s, 9 H), 1.13 (d, J = 7.2 Hz, 3 H), 1.10 (s, 18 H), 1.04-1.13 (s, 3 H), 1.07 (d, J = 7.0 Hz, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 172.7, 140.8, 88.8, 80.7, 75.1, 46.9, 42.0, 28.2, 18.2, 15.5, 13.1, 9.4. IR (film): 1733, 1460, 1255, 882 cm. MS (DCI/NH3): m/z = 529 [M + H]+. Anal. Calcd for C21H40Br2O3Si: C, 47.73; H, 7.63. Found: C, 47.81; H, 7.51.

23

Spectroscopic Data for Compound 1
[α]D ²5 -2.5 (c 0.8, CHCl3). ¹H NMR (300 MHz, CDCl3): δ = 9.85 (dd, J = 2.5, 1.3 Hz, 1 H), 4.91 (ddd, J = 10.5, 7.4, 4.0 Hz, 1 H), 3.87 (t, J = 2.3 Hz, 1 H), 2.80 (td, J = 7.5, 2.3 Hz, 1 H), 2.78 (td, J = 16.7, 4.0, 1.3 Hz, 1 H), 2.68 (ddd, J = 16.7, 7.4, 2.5 Hz, 1 H), 2.04-2.15 (m, 1 H), 1.28 (d, J = 7.5 Hz, 3 H), 0.98-1.10 (m, 24 H). ¹³C NMR (75 MHz, CDCl3): δ = 199.5, 173.1, 76.3, 75.0, 46.5, 44.4, 33.6, 18.1, 16.7, 13.9, 12.7. IR (film): 2731, 1735, 1223, 883 cm.
MS (DCI/NH3): m/z = 360 [M + NH4]+, 343 [M + H]+.