References and Notes
1a
Hudlicky M.
Pavlath AE.
Chemistry
of Organic Fluorine Compounds II. A Critical Review
ACS Monograph
187:
American Chemical Society;
Washington DC:
1995.
1b
Kirk KL.
J. Fluorine Chem.
2006,
127:
1013 ; and references cited therein
1c
Hagmann WK.
J. Med. Chem.
2008,
51:
4359 ; and references cited therein
2a
Wakefield B.
Innovat. Pharmaceut. Technol.
2000,
74 ; http://www.iptonline.com/articles/public/IPTFOUR74NP.pdf
2b
Müller K.
Faeh C.
Diederich F.
Science
2007,
317:
1881
3
Borodin A.
Justus
Liebigs Ann. Chem.
1863,
126:
58
4a
Lal GS.
Pez GP.
Syvret RG.
Chem. Rev.
1996,
96:
1737
4b
Furin GG.
Fainzilberg AA.
Russ.
Chem. Rev.
1999,
68:
653
4c
Modern
Organofluorine Chemistry - Synthetic Aspects, In Advances in Organic Synthesis
Vol.
2:
Lalli KK.
.
Bentham
Science;
Amsterdam:
2006.
5a
Stavber S.
Zupan M.
Modern Organofluorine Chemistry - Synthetic
Aspects, In Advances in Organic Synthesis
Vol.
2:
Lalli KK.
.
Bentham
Science;
Amsterdam:
2006.
p.213-268 ; and references cited therein
5b
Singh PR.
Shreeve MJ.
Acc. Chem.
Res.
2004,
37:
31
5c
Nyffeler PT.
Duron SG.
Burkart MD.
Vincent SP.
Wong C.-H.
Angew. Chem. Int. Ed.
2004,
44:
192
6a
Lancaster M.
Green
Chemistry
RSC;
Cambridge:
2002.
6b
Anastas PT.
Warner JC.
Green Chemistry: Theory and Practice
Oxford
University Press;
New York:
1998.
6c
Sheldon RA.
Green Chem.
2005,
7:
267
6d
Clark
JH.
Tavener S.
Org. Process
Res. Dev.
2007,
11:
149 ;
and references cited therein
7a
Organic Reactions in Water: Principles, Strategies
and Applications
Lindström UM.
Blackwell;
Oxford:
2007.
7b
Herrerias CI.
Yao X.
Li Z.
Li C.-J.
Chem. Rev.
2007,
107:
2546
7c
Dallinger D.
Kappe CO.
Chem. Rev.
2007,
107:
2563
8a
Narayan S.
Muldoon J.
Finn MG.
Fokin VV.
Kolb CH.
Sharpless KB.
Angew. Chem. Int. Ed.
2005,
44:
3275
8b
Hayashi Y.
Angew.
Chem. Int. Ed.
2006,
45:
8103
8c
Klijn JE.
Engberts JBFN.
Nature
(London)
2005,
435:
746
9a
Engberts JBFN. In Organic Reactions in Water: Principles, Strategies
and Applications
Lindström UM.
Blackwell;
Oxford:
2007.
p.47-55 ; and references cited therein
9b
Sijbren O.
Engberts JBFN.
Org.
Biomol. Chem.
2003,
1:
2809 ;
and references cited therein
10a
Breslow R.
Acc. Chem. Res.
1991,
24:
159
10b
Lindström UM.
Andersson F.
Angew.
Chem. Int. Ed.
2006,
45:
548
11a
Breslow R.
Acc. Chem. Res.
2004,
37:
471
11b
Luche JL.
Synthetic Organic Sonochemistry
Plenum
Press;
New York:
1998.
11c
Tascioglu S.
Tetrahedron
1996,
52:
11113
11d
Kobayashi S.
Manabe K.
Acc. Chem. Res.
2002,
35:
209
12a
Dwars T.
Paetzold E.
Oehme G.
Angew. Chem. Int. Ed.
2005,
44:
7174 ; and references cited therein
12b
Ogawa C.
Kobayashi S. In Organic
Reactions in Water: Principles, Strategies and Applications
Lindström UM.
Blackwell;
Oxford:
2007.
p.79-91
12c
Bunton
CA.
Nome F.
Quina FH.
Romsted LS.
Acc.
Chem. Res.
1991,
24:
359
13a
Jereb M.
Zupan M.
Stavber S.
Green. Chem.
2004,
7:
100
13b
Pavlinac J.
Zupan M.
Stavber S.
J.
Org. Chem.
2006,
71:
1027
13c
Kralj P.
Zupan M.
Stavber S.
J.
Org. Chem.
2006,
71:
3880
13d
Pavlinac J.
Zupan M.
Stavber S.
Synthesis
2006,
2603
13e
Pravst I.
Zupan M.
Stavber S.
Tetrahedron
Lett.
2006,
47:
4707
13f
Podgoršek A.
Stavber S.
Zupan M.
Iskra J.
Green Chem.
2007,
9:
1212
14
Taylor SD.
Kotoris CC.
Hum G.
Tetrahedron
1999,
55:
12431
15a
Stavber S.
Zupan M.
Tetrahedron
Lett.
1996,
37:
3591
15b
Stavber S.
Jereb M.
Zupan M.
Chem.
Commun.
2000,
1323
15c
Stavber S.
Jereb M.
Zupan M.
Synthesis
2002,
2609
15d
Stavber G.
Zupan M.
Jereb M.
Stavber S.
Org. Lett.
2004,
6:
4973
16a
Duplatre G.
Ferreira-Marques MF.
da Graça-Miguel M.
J.
Phys. Chem.
1996,
100:
16608
16b
Wang T.-Z.
Mao S.-Z.
Miao X.-J.
Zhao S.
Yu J.-Y.
Du Y.-R.
J. Colloid Interface Sci.
2001,
241:
465
16c
Cui X.
Mao S.
Liu M.
Yuan H.
Du Y.
Langmuir
2008,
24:
10771
17a
Syvret RG.
Kathleen MB.
Nguyen TP.
Bulleck VL.
Rieth RD.
J.
Org. Chem.
2002,
67:
4487
17b
Ye C.
Shreeve JM.
J. Org. Chem.
2004,
69:
8561
18
Keeffe JR.
Kresge AJ.
Schepp NP.
J. Am. Chem. Soc.
1990,
112:
4862
19
General Procedure
for the Direct Fluorination of Ketones in SDS Aqueous Micellar System
Ketone
(1 mmol) was placed in a glass flask (25 mL) equipped with a magnetic
stirrer. Then, H2O (5 mL) was added and stirred for a
few minutes. An appropriate amount of SDS (144 mg, 0.5 mmol or 288
mg, 1 mmol; see Table
[³]
) was
then added to the heterogeneous reaction system and heated to 80 ˚C
during rapid stirring. When the reaction system reached 80 ˚C,
F-TEDA-BF4 (390 mg, 1.1 mmol) was added in two portions
over an interval of 1 h, and stirred and held at 80 ˚C
until the KI test showed consumption of the fluorinating reagent.
When reaction was complete, the reaction system was cooled to r.t.,
and the resulting suspension was extracted with Et2O
(2 × 15 mL). The combined ether phases
were dried over anhyd Na2SO4. After the removal
of the solvent under reduced pressure, the crude products obtained
were identified with ¹H NMR, ¹9F
NMR, and MS analysis and purified by silica gel column chromatography
or preparative TLC (SiO2, CH2Cl2,
and a few drops of EtOH) to afford pure α-fluoro ketones.
The spectroscopic data of the products were in agreement with those
reported in the literature.
Spectroscopic
Data for Representative Compounds
1-Fluoro-1-phenylpropan-2-one
²²
(21)
Liquid product. ¹H
NMR (300 MHz, CDCl3): δ = 2.23
(d, J = 4.0
Hz, 3 H, Me), 5.68 (d, J = 48.7
Hz, 1 H, CHF), 7.40 (br s, 5 H, ArH). ¹9F NMR
(285 MHz, CDCl3): δ = -183.14 (dq, J = 48.7,
4.0 Hz). ¹³C NMR (76.2 MHz, CDCl3): δ = 25.13
(Me), 95.84 (d, J = 187.8
Hz, C-1), 126.00 (d, J = 7.0
Hz), 128.9, 129.36 (d, J = 2.3
Hz), 133.94 (d, J = 20.6 Hz),
204.55 (d, J = 26.7
Hz, CO). MS (EI, 70eV):
m/z (%) = 152
(6) [M+], 110 (10), 109 (100),
83 (20).
1-Fluoro-1,1-diphenyl-propan-2-one
²³
(23)
Mp
58.5-60.0 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 2.41
(d, J = 5.9 Hz, 3 H, Me), 7.37
(br s, 10 H, ArH). ¹9F NMR (285 MHz, CDCl3): δ = -143.62
(q, J = 5.9
Hz). ¹³C NMR (76.2 MHz, CDCl3): δ = 26.71
(Me), 102.17 (d, J = 185.8
Hz,
C-1), 126.64 (d, J = 7.4
Hz), 128.34, 128.77 (d, J = 2.0
Hz), 137.54 (d, J = 22.8
Hz), 206.43 (d, J = 32.7
Hz, CO).
MS (EI, 70eV): m/z (%) = 185
(100) [M+ - COMe],
151 (11).
3-Fluoro-4-phenylbutan-2-one
²4
(27)
Liquid
product. ¹H NMR (300 MHz, CDCl3): δ = 2.13
(d, J = 4.9
Hz, 3 H, Me), 3.01-3.21 (m, 2 H, CH2), 4.93
(ddd, J = 48.5,
6.0, 3.0 Hz, 1 H, CHF), 7.21-7.34 (m, 5 H, ArH). ¹9F
NMR (285 MHz, CDCl3): δ = -188.66
(dtq, J = 48.5, 23.2,
5.0 Hz). ¹³C NMR (76.2 MHz, CDCl3): δ = 26.42 (Me),
38.10 (d, J = 20.6
Hz, C-4), 95.89 (d, J = 187.3
Hz,
C-3), 127.10, 128.57, 129.49, 135.28, 209.98 (d, J = 26.7 Hz,
CO). MS (EI, 70eV): m/z (%) = 166
(100) [M+], 146 (100), 123
(15), 91 (77), 77 (41).
20
Thomas MG.
Suckling CJ.
Pitt AR.
Suckling KE.
J.
Chem. Soc., Perkin Trans. 1
1999,
3191
21 The graphical abstract drawing was
inspired by that of the article: Manabe K.
Iimura S.
Sun X.-M.
Kobayashi S.
J. Am. Chem. Soc.
2002,
124:
11971
22
Stavber S.
Zupan M.
J. Org. Chem.
1987,
52:
5022
23
Resnati G.
DesMarteau DD.
J. Org. Chem.
1991,
56:
4925
24
Welch JT.
Seper KW.
J. Org. Chem.
1988,
53:
2991