RSS-Feed abonnieren
DOI: 10.1055/s-0028-1087924
Micellar-System-Mediated Direct Fluorination of Ketones in Water
Publikationsverlauf
Publikationsdatum:
16. Februar 2009 (online)
Abstract
A micellar system was developed and applied for direct regioselective fluorination of a variety of cyclic and acyclic ketones to α-fluoroketones in water as reaction medium with Selectfluor F-TEDA-BF4 as fluorinating reagent. The inexpensive ionic amphiphile sodium dodecyl sulfate (SDS) was found to be an excellent promoter for fluorofunctionalization of hydrophobic ketones without prior activation or use of acid catalysts.
Key words
ketones - halogenation - micelles - F-TEDA-BF4 - water
-
1a
Hudlicky M.Pavlath AE. Chemistry of Organic Fluorine Compounds II. A Critical Review ACS Monograph 187: American Chemical Society; Washington DC: 1995. -
1b
Kirk KL. J. Fluorine Chem. 2006, 127: 1013 ; and references cited therein -
1c
Hagmann WK.
J. Med. Chem. 2008, 51: 4359 ; and references cited therein -
2a
Wakefield B. Innovat. Pharmaceut. Technol. 2000, 74 ; http://www.iptonline.com/articles/public/IPTFOUR74NP.pdf -
2b
Müller K.Faeh C.Diederich F. Science 2007, 317: 1881 - 3
Borodin A. Justus Liebigs Ann. Chem. 1863, 126: 58 -
4a
Lal GS.Pez GP.Syvret RG. Chem. Rev. 1996, 96: 1737 -
4b
Furin GG.Fainzilberg AA. Russ. Chem. Rev. 1999, 68: 653 -
4c
Modern
Organofluorine Chemistry - Synthetic Aspects, In Advances in Organic Synthesis
Vol.
2:
Lalli KK. . Bentham Science; Amsterdam: 2006. -
5a
Stavber S.Zupan M. Modern Organofluorine Chemistry - Synthetic Aspects, In Advances in Organic Synthesis Vol. 2:Lalli KK. . Bentham Science; Amsterdam: 2006. p.213-268 ; and references cited therein -
5b
Singh PR.Shreeve MJ. Acc. Chem. Res. 2004, 37: 31 -
5c
Nyffeler PT.Duron SG.Burkart MD.Vincent SP.Wong C.-H. Angew. Chem. Int. Ed. 2004, 44: 192 -
6a
Lancaster M. Green Chemistry RSC; Cambridge: 2002. -
6b
Anastas PT.Warner JC. Green Chemistry: Theory and Practice Oxford University Press; New York: 1998. -
6c
Sheldon RA. Green Chem. 2005, 7: 267 -
6d
Clark JH.Tavener S. Org. Process Res. Dev. 2007, 11: 149 ; and references cited therein -
7a
Organic Reactions in Water: Principles, Strategies
and Applications
Lindström UM. Blackwell; Oxford: 2007. -
7b
Herrerias CI.Yao X.Li Z.Li C.-J. Chem. Rev. 2007, 107: 2546 -
7c
Dallinger D.Kappe CO. Chem. Rev. 2007, 107: 2563 -
8a
Narayan S.Muldoon J.Finn MG.Fokin VV.Kolb CH.Sharpless KB. Angew. Chem. Int. Ed. 2005, 44: 3275 -
8b
Hayashi Y. Angew. Chem. Int. Ed. 2006, 45: 8103 -
8c
Klijn JE.Engberts JBFN. Nature (London) 2005, 435: 746 -
9a
Engberts JBFN. In Organic Reactions in Water: Principles, Strategies and ApplicationsLindström UM. Blackwell; Oxford: 2007. p.47-55 ; and references cited therein -
9b
Sijbren O.Engberts JBFN. Org. Biomol. Chem. 2003, 1: 2809 ; and references cited therein -
10a
Breslow R. Acc. Chem. Res. 1991, 24: 159 -
10b
Lindström UM.Andersson F. Angew. Chem. Int. Ed. 2006, 45: 548 -
11a
Breslow R. Acc. Chem. Res. 2004, 37: 471 -
11b
Luche JL. Synthetic Organic Sonochemistry Plenum Press; New York: 1998. -
11c
Tascioglu S. Tetrahedron 1996, 52: 11113 -
11d
Kobayashi S.Manabe K. Acc. Chem. Res. 2002, 35: 209 -
12a
Dwars T.Paetzold E.Oehme G. Angew. Chem. Int. Ed. 2005, 44: 7174 ; and references cited therein -
12b
Ogawa C.Kobayashi S. In Organic Reactions in Water: Principles, Strategies and ApplicationsLindström UM. Blackwell; Oxford: 2007. p.79-91 -
12c
Bunton CA.Nome F.Quina FH.Romsted LS. Acc. Chem. Res. 1991, 24: 359 -
13a
Jereb M.Zupan M.Stavber S. Green. Chem. 2004, 7: 100 -
13b
Pavlinac J.Zupan M.Stavber S. J. Org. Chem. 2006, 71: 1027 -
13c
Kralj P.Zupan M.Stavber S. J. Org. Chem. 2006, 71: 3880 -
13d
Pavlinac J.Zupan M.Stavber S. Synthesis 2006, 2603 -
13e
Pravst I.Zupan M.Stavber S. Tetrahedron Lett. 2006, 47: 4707 -
13f
Podgoršek A.Stavber S.Zupan M.Iskra J. Green Chem. 2007, 9: 1212 - 14
Taylor SD.Kotoris CC.Hum G. Tetrahedron 1999, 55: 12431 -
15a
Stavber S.Zupan M. Tetrahedron Lett. 1996, 37: 3591 -
15b
Stavber S.Jereb M.Zupan M. Chem. Commun. 2000, 1323 -
15c
Stavber S.Jereb M.Zupan M. Synthesis 2002, 2609 -
15d
Stavber G.Zupan M.Jereb M.Stavber S. Org. Lett. 2004, 6: 4973 -
16a
Duplatre G.Ferreira-Marques MF.da Graça-Miguel M. J. Phys. Chem. 1996, 100: 16608 -
16b
Wang T.-Z.Mao S.-Z.Miao X.-J.Zhao S.Yu J.-Y.Du Y.-R. J. Colloid Interface Sci. 2001, 241: 465 -
16c
Cui X.Mao S.Liu M.Yuan H.Du Y. Langmuir 2008, 24: 10771 -
17a
Syvret RG.Kathleen MB.Nguyen TP.Bulleck VL.Rieth RD. J. Org. Chem. 2002, 67: 4487 -
17b
Ye C.Shreeve JM. J. Org. Chem. 2004, 69: 8561 - 18
Keeffe JR.Kresge AJ.Schepp NP. J. Am. Chem. Soc. 1990, 112: 4862 - 20
Thomas MG.Suckling CJ.Pitt AR.Suckling KE. J. Chem. Soc., Perkin Trans. 1 1999, 3191 - 21 The graphical abstract drawing was
inspired by that of the article:
Manabe K.Iimura S.Sun X.-M.Kobayashi S. J. Am. Chem. Soc. 2002, 124: 11971 - 22
Stavber S.Zupan M. J. Org. Chem. 1987, 52: 5022 - 23
Resnati G.DesMarteau DD. J. Org. Chem. 1991, 56: 4925 - 24
Welch JT.Seper KW. J. Org. Chem. 1988, 53: 2991
References and Notes
General Procedure
for the Direct Fluorination of Ketones in SDS Aqueous Micellar System
Ketone
(1 mmol) was placed in a glass flask (25 mL) equipped with a magnetic
stirrer. Then, H2O (5 mL) was added and stirred for a
few minutes. An appropriate amount of SDS (144 mg, 0.5 mmol or 288
mg, 1 mmol; see Table
[³]
) was
then added to the heterogeneous reaction system and heated to 80 ˚C
during rapid stirring. When the reaction system reached 80 ˚C,
F-TEDA-BF4 (390 mg, 1.1 mmol) was added in two portions
over an interval of 1 h, and stirred and held at 80 ˚C
until the KI test showed consumption of the fluorinating reagent.
When reaction was complete, the reaction system was cooled to r.t.,
and the resulting suspension was extracted with Et2O
(2 × 15 mL). The combined ether phases
were dried over anhyd Na2SO4. After the removal
of the solvent under reduced pressure, the crude products obtained
were identified with ¹H NMR, ¹9F
NMR, and MS analysis and purified by silica gel column chromatography
or preparative TLC (SiO2, CH2Cl2,
and a few drops of EtOH) to afford pure α-fluoro ketones.
The spectroscopic data of the products were in agreement with those
reported in the literature.
Spectroscopic
Data for Representative Compounds
1-Fluoro-1-phenylpropan-2-one
²²
(21)
Liquid product. ¹H
NMR (300 MHz, CDCl3): δ = 2.23
(d, J = 4.0
Hz, 3 H, Me), 5.68 (d, J = 48.7
Hz, 1 H, CHF), 7.40 (br s, 5 H, ArH). ¹9F NMR
(285 MHz, CDCl3): δ = -183.14 (dq, J = 48.7,
4.0 Hz). ¹³C NMR (76.2 MHz, CDCl3): δ = 25.13
(Me), 95.84 (d, J = 187.8
Hz, C-1), 126.00 (d, J = 7.0
Hz), 128.9, 129.36 (d, J = 2.3
Hz), 133.94 (d, J = 20.6 Hz),
204.55 (d, J = 26.7
Hz, CO). MS (EI, 70eV):
m/z (%) = 152
(6) [M+], 110 (10), 109 (100),
83 (20).
1-Fluoro-1,1-diphenyl-propan-2-one
²³
(23)
Mp
58.5-60.0 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 2.41
(d, J = 5.9 Hz, 3 H, Me), 7.37
(br s, 10 H, ArH). ¹9F NMR (285 MHz, CDCl3): δ = -143.62
(q, J = 5.9
Hz). ¹³C NMR (76.2 MHz, CDCl3): δ = 26.71
(Me), 102.17 (d, J = 185.8
Hz,
C-1), 126.64 (d, J = 7.4
Hz), 128.34, 128.77 (d, J = 2.0
Hz), 137.54 (d, J = 22.8
Hz), 206.43 (d, J = 32.7
Hz, CO).
MS (EI, 70eV): m/z (%) = 185
(100) [M+ - COMe],
151 (11).
3-Fluoro-4-phenylbutan-2-one
²4
(27)
Liquid
product. ¹H NMR (300 MHz, CDCl3): δ = 2.13
(d, J = 4.9
Hz, 3 H, Me), 3.01-3.21 (m, 2 H, CH2), 4.93
(ddd, J = 48.5,
6.0, 3.0 Hz, 1 H, CHF), 7.21-7.34 (m, 5 H, ArH). ¹9F
NMR (285 MHz, CDCl3): δ = -188.66
(dtq, J = 48.5, 23.2,
5.0 Hz). ¹³C NMR (76.2 MHz, CDCl3): δ = 26.42 (Me),
38.10 (d, J = 20.6
Hz, C-4), 95.89 (d, J = 187.3
Hz,
C-3), 127.10, 128.57, 129.49, 135.28, 209.98 (d, J = 26.7 Hz,
CO). MS (EI, 70eV): m/z (%) = 166
(100) [M+], 146 (100), 123
(15), 91 (77), 77 (41).