Subscribe to RSS
DOI: 10.1055/s-0028-1087940
Azide-Free Synthesis of Oseltamivir from l-Methionine
Publication History
Publication Date:
09 March 2009 (online)
Abstract
Highly enantioselective synthesis of oseltamivir has been achieved starting from l-methionine, in which Staudinger reaction is utilized for the alignment of three contiguous chiral centers of oseltamivir. The present method would lead to an alternative synthesis of oseltamivir that avoids the use of hazardous azide reagents.
Key words
anti-influenza drugs - tamiflu - Staudinger reaction - hydroformylations - intramolecular aldol condensation
- 2
Kim CU.Lew W.Williams MA.Liu H.Zhang L.Swaminathan S.Bischofberger N.Chen MS.Mendel DB.Tai CY.Laver WG.Stevens RC. J. Am. Chem. Soc. 1997, 119: 681 - 3
Farina V.Brown JD. Angew. Chem. Int. Ed. 2006, 45: 7330 -
4a
Yeung Y.-Y.Hong S.Corey EJ. J. Am. Chem. Soc. 2006, 128: 6310 -
4b
Fukuta Y.Mita T.Fukuda N.Kanai M.Shibasaki M. J. Am. Chem. Soc. 2006, 128: 6312 -
4c
Cong X.Yao ZJ. J. Org. Chem. 2006, 71: 5365 -
4d
Mita T.Fukuda N.Roca FX.Kanai M.Shibasaki M. Org. Lett. 2007, 9: 259 -
4e
Yamatsugu K.Kamijo S.Suto Y.Kanai M.Shibasaki M. Tetrahedron Lett. 2007, 48: 1403 -
4f
Bromfield KM.Graden H.Hagberg DP.Olsson T.Kann N. Chem. Commun. 2007, 3183 -
4g
Satoh N.Akiba T.Yokoshima S.Fukuyama T. Angew. Chem. Int. Ed. 2007, 46: 5734 -
4h
Shie J.-J.Fang J.-M.Wang S.-Y.Tsai K.-C.Cheng Y.-SE.Yang A.-S.Hsiao S.-C.Su C.-Y.Wong C.-H. J. Am. Chem. Soc. 2007, 129: 11892 -
4i
Trost BM.Zhang T. Angew. Chem. Int. Ed. 2008, 47: 1 -
4j
Zutter U.Iding H.Spurr P.Wirz B. J. Org. Chem. 2008, 73: 4895 -
4k
Shie J.-J.Fang J.-M.Wong C.-H. Angew. Chem. Int. Ed. 2008, 47: 5788 -
4l
Satoh N.Akiba T.Yokoshima S.Fukuyama T. Tetrahedron 2009, in press -
4m
Yamatsugu K.Yin L.Kamijo S.Kimura Y.Kanai M.Shibasaki M. Angew. Chem. Int. Ed. 2009, 48: 1070 -
4n
Ishikawa H.Suzuki T.Hayashi Y. Angew. Chem. Int. Ed. 2009, 48: 1304 - 5 For a recent review on the synthesis
of oseltamivir (1), see:
Shibasaki M.Kanai M. Eur. J. Org. Chem. 2008, 1839 ; see also ref. 3 - 6
Mandai T.Oshitari T. Synlett 2009, 783 - For previously reported azide-free syntheses, see:
-
7a
Karpf M.Trussardi R. J. Org. Chem. 2001, 66: 2044 -
7b
Harrington PJ.Brown JD.Foderaro T.Hughes RC. Org. Process Res. Dev. 2004, 8: 86 - For preparation of cis-β-lactams, see:
-
8a
Palomo C.Cabré F.Ontoria JM. Tetrahedron Lett. 1992, 33: 4819 -
8b
Palomo C.Cossío FP.Cuevas C.Lecea B.Mielgo A.Román P.Luque A.Martinez-Ripoll M. J. Am. Chem. Soc. 1992, 114: 9360 - For reviews of Staudinger reaction, see:
-
9a
Palomo C.Aizpurua JM.Ganboa I.Oiarbide M. Eur. J. Org. Chem. 1999, 3223 -
9b
Palomo C.Aizpurua JM.Ganboa I.Oiarbide M. Curr. Med. Chem. 2004, 11: 1837 - For reviews of β-lactams as chiral synthetic building blocks, see:
-
10a
Alcaide B.Almendros P. Curr. Med. Chem. 2004, 11: 1921 -
10b
Alcaide B.Almendros P.Aragoncillo C. Chem. Rev. 2007, 107: 4437 - 11
Wallace GA.Scott RW.Heathcock CH. J. Org. Chem. 2000, 65: 4145 - A mixture of 7b (1.55 g, ca. 3.22 mmol), NaHCO3 (2.70 g, 32.2 mmol), α-pinene (10 mL), and decalins (10 mL) was placed into a 100 mL round-bottomed flask fitted with a reflux condenser. The reaction mixture was deoxygenated by alternate evacuation-argon flush cycles (five iterations) and heated with vigorous stirring at 150-155 ˚C for 6 h under argon atmosphere. After being cooled to r.t., the reaction mixture was partitioned between H2O (30 mL) and EtOAc (30 mL). The organic layer separated was washed with brine (2 × 30 mL), dried (MgSO4), filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane-EtOAc, 1:0 to 20:1 to 10:1 to 6:1) to give olefin 8a as a white solid (1.09 g, 81% from 7a); [α]D ²6 -93.6 (c 1.03, CHCl3); mp 116.9-117.4 ˚C. ¹H NMR (500 MHz, CDCl3): δ = 7.35 (d, J = 8.8 Hz, 2 H), 6.87 (d, J = 8.8 Hz, 2 H), 5.92 (ddd, J = 7.6, 10.4, 17.0 Hz, 1 H), 5.30 (d, J = 9.5 Hz, 1 H), 5.07 (d, J = 10.4 Hz, 1 H), 5.00 (d, J = 17.0 Hz, 1 H), 4.94 (m, 1 H), 4.78 (d, J = 5.5 Hz, 1 H), 4.38 (dd, J = 5.1, 5.5 Hz, 1 H), 3.79 (s, 3 H), 3.60 (tt, J = 5.5, 5.5 Hz, 1 H), 1.72 (m, 2 H), 1.62 (m, 2 H), 1.45 (br s, 9 H), 0.95 (t, J = 7.5 Hz, 6 H). ¹³C NMR (125 MHz, CDCl3): δ = 165.2, 156.4, 133.8, 130.7, 118.6, 114.5, 106.3, 84.4, 81.0, 79.7, 57.5, 55.5, 52.3, 28.4, 26.5, 25.5, 9.6, 9.3. For thermal elimination of a methionine-derived sulfoxide, see:
-
14a
Ohfune Y.Kurokawa N. Tetrahedron Lett. 1984, 25: 1071 -
14b For our previous protocol
of thermal desulfinylation, see also:
Mandai T.Matsumoto S.Kohama M.Kawada M.Tsuji J.Saito S.Moriwake T. J. Org. Chem. 1990, 55: 5671 - 16
Kronenthal DR.Han CY.Taylor MK. J. Org. Chem. 1982, 47: 2765 - 17
Cuny GD.Buchwald SL. J. Am. Chem. Soc. 1993, 115: 2066 - 6,6′-{[3,3′-bis(1,1-dimethylethyl)-5,5′-dimethoxy[1,1′-biphenyl]-2,2′-diyl]bis(oxy)}bis{dibenzo[d,f][1,3,2]dioxa-phosphepine}:
-
18a
Billig E,Abatjoglou AG, andBryant DR. inventors; US 4668651. -
18b
Billig E,Abatjoglou AG, andBryant DR. inventors; US 4769498. ; for preparation of BIPHEPHOS, see Supporting Information of ref. 17 - 19
Fukuyama T.Lin S.-C.Li L. J. Am.Chem. Soc. 1990, 112: 7050 -
20a
Corey EJ.Danheiser RL.Chandrasekaran S.Siret P.Keck GE.Gras J.-L. J. Am. Chem. Soc. 1978, 100: 8031 -
20b
Snyder SA.Corey EJ. Tetrahedron Lett. 2006, 47: 2083
References and Notes
Present address: School of Pharmaceutical Sciences, Teikyo University, 1091-1 Suarashi, Sagamiko, Sagamihara, 229-0195, Japan.
12The desired cis-β-lactam 7a was easily purified by trituration in
cold MeOH to remove byproducts such as minor stereoisomers (ca.
5%) and N-(4-methoxyphenyl)-
(3-pentyloxy)acetamide.
Compound 7a: a white solid; [α]D
²² -119
(c 0.99 CHCl3); mp 161.6-162.6 ˚C. ¹H
NMR (500 MHz, CDCl3): δ = 7.39 (br d, J = 8.9 Hz,
2 H), 6.87 (br d, J = 8.9
Hz, 2 H), 5.09 (br d, J = 10.1
Hz, 1 H), 4.78 (d, J = 5.5
Hz, 1 H), 4.56 (m, 1 H), 4.40 (dd, J = 5.5,
5.8 Hz, 1 H), 3.79 (s, 3 H), 3.61 (tt, J = 5.8, 5.8
Hz, 1 H), 2.55 (ddd, J = 4.6,
8.6, 13.1 Hz, 1 H), 2.38 (ddd, J = 7.9,
8.3, 13.1 Hz, 1 H), 1.93 (m, 1 H), 1.87 (s, 3 H), 1.80 (m, 1 H),
1.72 (m, 2 H), 1.62 (m, 2 H), 1.51-1.43 (two br s, 9 H),
1.94 (m, 6 H). ¹³C NMR (125 MHz, CDCl3): δ = 165.3,
156.6, 155.7, 130.6, 118.4, 114.6, 84.5, 81.1, 79.6, 57.3, 55.5,
48.7, 30.9, 28.8, 28.4, 26.6, 25.5, 15.2, 9.6, 9.4. Anal. Calcd
for C24H38N2O5S: C,
61.77; H, 8.21; N, 6.00. Found: C, 61.87; H, 8.31; N, 6.16.
Daicel CHIRALCEL OD-RH; eluent: MeCN-H2O (10:1); λ = 254 nm; flow rate: 0.3 mL/min; t R(7a) = 7.8 min; t R (ent-7a) = 9.9 min.
15Compound 8c: white solid; [α]D ²5 -14.4 (c 0.86 CHCl3); mp 111.6-111.8 ˚C. ¹H NMR (500 MHz, CDCl3): δ = 7.60-7.55 (br s, 4 H), 6.96 (d, J = 8.8 Hz, 2 H), 6.39 (d, J = 8.8 Hz, 2 H), 6.20 (ddd, J = 6.1, 10.0, 17.0 Hz, 1 H), 5.33-5.26 (m, 3 H), 5.03 (dd, J = 5.2, 10.3 Hz, 1 H), 4.89 (d, J = 5.2 Hz, 1 H), 3.65 (tt, J = 5.5, 5.5 Hz, 1 H), 3.45 (s, 3 H), 1.72 (m, 2 H), 1.61 (m, 2 H), 1.02 (t, J = 7.5 Hz, 3 H), 0.92 (t, J = 7.5 Hz, 3 H). ¹³C NMR (125 MHz, CDCl3): δ = 167.8, 166.0, 156.9, 134.2, 133.5, 131.7, 131.4, 128.1, 123.5, 122.8, 122.7, 119.0, 118.5, 114.5, 113.8, 83.3, 80.3, 57.3, 55.1, 53.0, 26.2, 25.3, 9.4, 9.2. Anal. Calcd for C26H28N2O5: C, 69.63, H, 6.29, N, 6.25. Found: C, 69.25; H, 6.10; N, 6.29.
21Compound 12: off-white solid; [α]D ²³.4 -44.0 (c 1.05, CHCl3); mp 198-199.1 ˚C. ¹H NMR (500 MHz, CDCl3, data of a mixture of rotamers): δ = 9.56 (s, 0.15 H), 9.54 (s, 0.85 H), 7.86-7.72 (m, 4 H), 6.68 (s, 0.15 H), 6.67 (s, 0.85 H), 5.58 (d, J = 7.6 Hz, 0.85 H), 5.26 (d, J = 7.6 Hz, 0.15 H), 4.95-4.87 (m, 0.85 H), 4.75-4.71 (m, 0.85 H), 4.50-4.32 (m, 1.15 H), 4.15-4.10 (m, 0.15 H), 3.46-3.33 (m, 1 H), 3.10-2.97 (m, 1 H), 2.76-2.65 (m, 1 H), 2.05 (s, 0.45 H), 1.78 (s, 2.55 H), 1.60-1.50 (m, 4 H), 1.00-0.85 (m, 6 H). ¹³C NMR (125 MHz, CDCl3, data of a mixture of rotamers): δ = 192.2, 170.3, 168.1, 147.5, 138.8, 134.2, 131.6, 123.4, 82.4, 74.6, 54.3, 47.8, 26.3, 25.7, 25.5, 23.3, 9.6, 9.3. Anal. Calcd for C22H26N2O5: C, 66.32, H, 6.58, N, 7.03. Found: C, 66.06; H, 6.72; N, 6.98.