References and Notes
1
Kikukawa K.
Matsuda T.
Chem. Lett.
1977,
159
For some recent selected references,
see:
2a
Brunner H.
Le Cousturier de Courcy N.
Genêt J.-P.
Synlett
2000,
201
2b
Cai MZ.
Hu RH.
Zhou J.
Chin.
Chem. Lett.
2001,
12:
861
2c
Darses S.
Pucheault M.
Genêt J.-P.
Eur.
J.
Org. Chem.
2001,
1121
2d
Sengupta S.
Bhattacharyya S.
Tetrahedron Lett.
2001,
42:
2035
2e
Andrus MB.
Song C.
Zhang J.
Org.
Lett.
2002,
4:
2079
2f
Selvakumar K.
Zapf A.
Spannenberg A.
Beller M.
Chem. Eur. J.
2002,
8:
3901
2g
Andrus MB.
Ma Y.
Zang Y.
Song C.
Tetrahedron Lett.
2002,
43:
9137
2h
Ma Y.
Song C.
Chai Q.
Ma C.
Andrus MB.
Synthesis
2003,
2886
2i
Wang C.
Tan L.-S.
He J.-P.
Hu H.-W.
Xu J.-H.
Synth.
Commun.
2003,
33:
773
2j
Masllorens J.
Moreno-Mañas M.
Pla-Quintana A.
Roglans A.
Org. Lett.
2003,
5:
1559
2k
Schmidt B.
Chem.
Commun.
2003,
1656
2l
Nelson ML.
Ismail
MY.
McIntyre L.
Bhatia B.
Viski P.
Hawkins P.
Rennie G.
Andorsky D.
Messersmith D.
Stapleton K.
Dumornay J.
Sheahan P.
Verma AK.
Warchol T.
Levy SB.
J. Org. Chem.
2003,
68:
5838
2m
Dai M.
Liang B.
Wang C.
Chen J.
Yang Z.
Org. Lett.
2004,
6:
221
2n
Kabalka GW.
Dong G.
Venkataiah B.
Tetrahedron Lett.
2004,
45:
2775
2o
Xu L.-H.
Zhang
Y.-Y.
Wang X.-L.
Chou J.-Y.
Dyes Pigm.
2004,
62:
283
2p
Sabino AA.
Machado AHL.
Correia CRD.
Eberlin MN.
Angew. Chem. Int. Ed.
2004,
43:
2514
2q
Sabino AA.
Machado AHL.
Correia CRD.
Eberlin MN.
Angew. Chem. Int. Ed.
2004,
43:
4389
2r
Garcia ALL.
Carpes MJS.
Montes de Oca ACB.
dos Santos MAG.
Santana CC.
Correia CRD.
J.
Org. Chem.
2005,
70:
1050
2s
Artuso E.
Barbero M.
Degani I.
Dughera S.
Fochi R.
Tetrahedron
2006,
62:
3146
2t
Pastre JC.
Correia CRD.
Org.
Lett.
2006,
8:
1657
2u
Perez R.
Veronese D.
Coelho F.
Antunes
OAC.
Tetrahedron
Lett.
2006,
47:
1325
3a
Kikukawa K.
Nagira K.
Wada F.
Matsuda T.
Tetrahedron
1981,
37:
31
3b
Hu R.-H.
Liu X.-L.
Cai M.-Z.
Jiangxi
Shifan Daxue Xuebao, Ziran Kexueban
2001,
25:
246 ; Chem. Abstr. 2001, 136, 355024
3c
Masllorens J.
Bouquillon S.
Roglans A.
Hénin F.
Muzart J.
J.
Organomet. Chem.
2005,
690:
3822
3d
Barbero M.
Cadamuro S.
Dughera S.
Synthesis
2006,
3443
4 For an excellent recent review on
the palladium chemistry of arenediazonium salts, see: Roglans A.
Pla-Quintana A.
Moreno-Mañas M.
Chem. Rev.
2006,
106:
4622
5a
Mandai T.
Hasegawa S.-i.
Fujimoto T.
Kawada M.
Nokami J.
Tsuji J.
Synlett
1989,
85
5b
Arcadi A.
Bernocchi E.
Cacchi S.
Marinelli F.
Tetrahedron
1991,
47:
1525
For some recent reviews on the palladium-catalyzed synthesis
of heterocycles from unsaturated alcohols, see:
6a
Muzart J.
Tetrahedron
2005,
61:
4179
6b
Muzart J.
Tetrahedron
2005,
61:
5955
6c
Wolfe JP.
Eur. J. Org. Chem.
2007,
571
6d
Wolfe JP.
Synlett
2008,
2913
7a
Cacchi S.
Fabrizi G.
Goggiamani A.
Persiani D.
Org.
Lett.
2008,
10:
1597
7b
Bartoli G.
Cacchi S.
Fabrizi G.
Goggiamani A.
Synlett
2008,
2508
8 The stereochemistry of 5b was
assigned by NMR analysis. That of the other 4-aryl-2-methoxytetrahydrofuran derivatives
has been assigned based on these data.
Alternatively, as suggested by one
of the referees, 5b might arise from 4b via proton loss and addition of MeOH
to the resultant dihydrofuran (although no evidence was attained
of the formation of such an intermediate). The tendency of furanols 1 to dehydrate upon distillation has been
described:
9a
Chalk AL.
Magennis SA.
J.
Org. Chem.
1976,
41:
273
In the case of formation of the dihydrofuran intermediate,
the addition of MeOH to the carbon-carbon double bond might
occur via an acid-catalyzed process:
9b
Wabnitz TC.
Yu J.-Q.
Spencer JB.
Chem. Eur. J.
2004,
10:
484
Palladium-catalyzed hydroalkoxylation of carbon-carbon
double bonds has also been reported:
9c
Gligorich KM.
Schultz MJ.
Sigman MS.
J. Am. Chem. Soc.
2006,
128:
2794
9d
Matsukawa Y.
Mizukado J.
Quan H.
Tamura M.
Sekiya A.
Angew.
Chem. Int. Ed.
2005,
44:
1128 ;
see also ref. 6a,b
For some selected references, see:
10a
Grieco PA.
Oguri T.
Yokoyama Y.
Tetrahedron Lett.
1978,
419
10b
Masaki Y.
Nagata K.
Kaji K.
Chem.
Lett.
1983,
1835
10c
Shing TKM.
Yeung Y.-Y.
Chem.-Eur.
J.
2006,
12:
8367
10d
Geng Z.
Chen B.
Chiu P.
Angew.
Chem. Int. Ed.
2006,
45:
6197
10e
La Clair JJ.
Angew. Chem. Int. Ed.
2006,
45:
2769
10f
Khoury C.
Minier M.
Le Goffic F.
Rager
M.-N.
J. Carbohydr. Chem.
2007,
26:
395
10g
Prasad KR.
Anbarasan P.
Tetrahedron:
Asymmetry
2007,
18:
2479
10h
Wan S.
Gunaydin H.
Houk KN.
Floreancig PE.
J. Am.
Chem. Soc.
2007,
129:
7915
11
Preparation of
4-Aryl-2-methoxytetrahydrofuran (5) via Palladium-Catalyzed Reaction
of Arenediazonium Tetrafluoroborates 2 with the THP Derivative of
(
Z
)-2-Buten-1,4-diol
(6) - Typical Procedure
To a stirred solution
of 6 (128.2 mg, 0.50 mmol) and Pd(OAc)2 (5.6
mg, 0.025 mmol) in anhyd MeOH (4.0 mL), 2a (221.9
mg, 1.0 mmol) was added at r.t. under argon. The reaction mixture
was warmed at 35 ˚C and stirred for 1 h (the reactor
was protected from light with aluminium film). After cooling, the
reaction mixture was diluted with Et2O, washed with a
sat. NaHCO3 solution, dried over Na2SO4,
and concentrated under reduced pressure. The residue was purified
by chromatography on silica gel [n-hexane-EtOAc, 75:25
(v/v)] to afford 75.2 mg (72% yield)
of 5a as an approximately 60:40 diastereomeric
mixture. The cis-isomer was isolated
and characterized.
Oil. IR (neat): 2940, 1606, 1077 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.25 (d, J = 8.6 Hz,
2 H), 6.87 (d, J = 8.6
Hz,
2 H), 5.19-5.15 (dd, J
1 = 5.5
Hz, J
2 = 3.0
Hz, 1 H), 4.17 (t, J = 8.0
Hz, 1 H), 3.81 (s, 3 H), 3.76-3.71 (m, 1 H), 3.45 (s, 3
H), 3.39-3.32 (m, 1 H), 2.70-2.52 (m, 1 H), 2.00-1.85
(m, 1 H). ¹³C NMR (100.6 MHz, CDCl3): δ = 158.4,
133.2, 128.7, 114.0, 110.8, 105.9, 73.2, 55.3, 55.0, 43.6, 41.2.
MS: m/z (%) = 208
(18) [M+], 177 (22), 147 (68).
12
Preparation of β-Aryl-γ-butyrolactones
13 from Arenediazonium Tetrafluoroborates 2 and the THP Derivative
of (
Z
)-2-Buten-1,4-diol
(6) via a Sequential Palladium-Catalyzed Arylation-Cyclization-Oxidation Protocol - Typical
Procedure
To a stirred solution of 6 (128.2
mg, 0.50 mmol) and Pd(OAc)2 (5.6 mg, 0.025 mmol) in anhyd
MeOH (4.0 mL), 2b (250.0 mg, 1.0 mmol)
was added at r.t. under argon. The reaction mixture was warmed at
35 ˚C and stirred for 45 min (the reactor was
protected from light with aluminium film). After this time, the
reaction mixture was diluted with Et2O, washed with a
sat. NaHCO3 solution, dried over Na2SO4,
and concentrated under reduced pressure. The residue was filtrated
through a short bed of SiO2 and concentrated under reduced
pressure. The crude was dissolved in CH2Cl2 (3
mL) and MCPBA (123.3 mg, 0.5 mmol; a commercially available 70% MCPBA
was used) and BF3˙OEt2 (25 µL,
0.2 mmol) were added. The cloudy reaction mixture was allowed to
stir at r.t. for 24 h and then poured into an NaHSO3 aq
solution. The organic layer was removed, and the aqueous layer was
washed with CH2Cl2. The organic layer was
washed with aq NaHCO3
, dried over Na2SO4, filtered,
and concentrated under reduced pressure. The residue was purified
by chromatography on silica gel
[n-hexane-EtOAc, 75:25 (v/v)] to
afford 81.4 mg (74%)
of 13b.
Mp
78-80 ˚C. IR (KBr): 1778, 1714, 1282,
1012 cm-¹. ¹H NMR
(400 MHz, CDCl3): δ = 8.02 (d, J = 8.3 Hz,
2 H), 7.31 (d, J = 8.3
Hz, 2 H), 4.68 (dd, J
1 = 8.8
Hz, J
2 = 7.9
Hz, 1 H), 4.28 (dd, J
1 = 8.9
Hz, J
2 = 7.9
Hz, 1 H), 3.90 (s, 3 H), 3.86 (qp, J = 8.3
Hz, 1 H), 2.96 (dd, J
1 = 9.1
Hz, J
2 = 8.8
Hz, 1 H), 2.68 (dd, J
1 = 8.8
Hz, J
2 = 17.2
Hz, 1 H). ¹³C NMR (100.6 MHz, CDCl3): δ = 175.9,
166.5, 144.7, 130.4, 129.7, 126.8, 73.6, 52.2, 41.0, 35.5. MS: m/z (%) = 220
(14) [M+], 162 (59), 131 (100),
77 (89).