Abstract
The hydration of β- and δ-hydroxy internal
alkynes catalyzed by Hg(OTf)2 took place instantaneously
to give ketones with complete regioselectivity under mild conditions,
whereas the hydration of internal alkyne without hydroxy moiety
was very slow and gave a mixture of ketones. If the hydroxy group
is located more than five carbons from the triple bond it has no
significant effect upon the hydration reaction.
Key words
Hg(OTf)2
- homogeneous catalysis - hydroxy
internal alkyne - regioselectivity - neighboring-group
effects
References and Notes
<A NAME="RU00409ST-1">1</A>
Present address: Division of Chemistry,
Graduate School of Science, Hokkaido University, Kita-ku, Saporo
060-0810, Japan.
<A NAME="RU00409ST-2A">2a</A>
Hintermann L.
Labonne A.
Synlett
2007,
1121
<A NAME="RU00409ST-2B">2b</A>
Stacy GW.
Mikulec RA.
Org. Synth., Coll. Vol. IV
Wiley;
New
York:
1963.
p.13-14
<A NAME="RU00409ST-3A">3a</A>
Thomas RJ.
Campbell KN.
Hennion GF.
J.
Am. Chem. Soc.
1938,
60:
718
<A NAME="RU00409ST-3B">3b</A>
Janardhanam S.
Balakumar A.
Rajagopalan K.
Bai LS.
Ravikumar K.
Rajan SS.
Synth. Commun.
1993,
23:
297
<A NAME="RU00409ST-3C">3c</A>
Mithran S.
Subbaraman AS.
Mamdapur VR.
Org. Prep. Proced. Int.
1994,
26:
482
<A NAME="RU00409ST-3D">3d</A>
Take K.
Okumura K.
Tsubaki K.
Taniguchi K.
Terai T.
Shiokawa Y.
Chem. Pharm. Bull.
1996,
44:
1858
<A NAME="RU00409ST-3E">3e</A>
Schick H.
Roatsch B.
Schramm S.
Gilsing H.-D.
Ramm M.
Gründemann E.
J. Org. Chem.
1996,
61:
5788
<A NAME="RU00409ST-3F">3f</A>
Jacobi PA.
Herradura P.
Tetrahedron Lett.
1997,
38:
6621
<A NAME="RU00409ST-4A">4a</A>
Uchimoto K.
Pure Appl. Chem.
1983,
55:
1845
<A NAME="RU00409ST-4B">4b</A>
Fukuda Y.
Shiragami H.
Uchimoto K.
Nozaki H.
J. Org. Chem.
1991,
56:
5816
<A NAME="RU00409ST-5A">5a</A>
Hiscox W.
Jennings PW.
Organometallics
1990,
9:
1997
<A NAME="RU00409ST-5B">5b</A>
Hartman JW.
Hiscox WC.
Jennings PW.
J. Org. Chem.
1993,
58:
7613
<A NAME="RU00409ST-5C">5c</A>
Jennings PW.
Hartman JW.
Hiscox WC.
Inorg. Chim. Acta
1994,
222:
317
<A NAME="RU00409ST-6A">6a</A>
Fukuda Y.
Uchimoto K.
J.
Org. Chem.
1991,
56:
3729
<A NAME="RU00409ST-6B">6b</A>
Vasudevan A.
Verzal MK.
Synlett
2004,
631
<A NAME="RU00409ST-7">7</A>
Mizushima E.
Sato K.
Hayashi T.
Tanaka M.
Angew. Chem. Int. Ed.
2002,
41:
4563
<A NAME="RU00409ST-8A">8a</A>
James BR.
Rempel GL.
J. Am. Chem. Soc.
1969,
91:
863
<A NAME="RU00409ST-8B">8b</A>
Blum J.
Huminer H.
Alper H.
J.
Mol. Catal.
1992,
75:
153
<A NAME="RU00409ST-9">9</A>
Meier IK.
Marsella JA.
J. Mol. Catal.
1993,
78:
31
<A NAME="RU00409ST-10">10</A>
Damiano JP.
Postel M.
J. Organomet. Chem.
1996,
522:
303
<A NAME="RU00409ST-11A">11a</A>
Chapdelaine MJ.
Warwick PJ.
Shaw A.
J. Org. Chem.
1989,
54:
1218
<A NAME="RU00409ST-11B">11b</A>
Tsuchimoto T.
Joya T.
Shirakawa E.
Kawakami Y.
Synlett
2000,
1777
<A NAME="RU00409ST-11C">11c</A>
Olivi N.
Thomas E.
Peyrat JF.
Alami M.
Brion JD.
Synlett
2004,
2175
<A NAME="RU00409ST-11D">11d</A>
Bras GL.
Provot O.
Peyrat JF.
Alami M.
Brion JD.
Tetrahedron Lett.
2006,
47:
5497
<A NAME="RU00409ST-12A">12a</A>
Khan MMT.
Halligudi SB.
Shukla S.
J.
Mol. Catal.
1990,
58:
299
<A NAME="RU00409ST-12B">12b</A>
Tokunaga M.
Wakatsuki Y.
Angew. Chem. Int. Ed.
1998,
37:
2867
<A NAME="RU00409ST-12C">12c</A>
Alvarez P.
Bassetti M.
Gimeno J.
Mancini G.
Tetrahedron Lett.
2001,
42:
8467
<A NAME="RU00409ST-12D">12d</A>
Suzuki T.
Tokunaga M.
Wakatsuki Y.
Org.
Lett.
2001,
3:
735
<A NAME="RU00409ST-12E">12e</A>
Grotjahn DB.
Incarvito CD.
Rheingold AL.
Angew. Chem. Int. Ed.
2001,
40:
3884
<A NAME="RU00409ST-13A">13a</A>
Nishizawa M.
Takenaka H.
Nishide H.
Hayashi Y.
Tetrahedron
Lett.
1983,
24:
2581
<A NAME="RU00409ST-13B">13b</A>
Nishizawa M.
Morikuni E.
Asoh K.
Kan Y.
Uenoyama K.
Imagawa H.
Synlett
1995,
169
<A NAME="RU00409ST-13C">13c</A>
Nishizawa M.
Studies in Natural Product Chemistry: Stereoselective
Synthesis
Part A, Vol. 1:
.
Elsevier;
Amsterdam:
1988.
p.655-676
<A NAME="RU00409ST-13D">13d</A>
Nishizawa M.
J.
Synth. Org. Chem. Jpn.
1999,
57:
677
<A NAME="RU00409ST-13E">13e</A>
Nishizawa M.
Imagawa H.
J. Synth. Org. Chem. Jpn.
2006,
64:
744
<A NAME="RU00409ST-14A">14a</A>
Nishizawa M.
Skwarczynski M.
Imagawa H.
Sugihara T.
Chem.
Lett.
2002,
12
<A NAME="RU00409ST-14B">14b</A>
When the hydration of
terminal alkyne was carried out using Hg(OTf)2 as catalyst,
mercuric acetylide (i) is formed to some
extent, corresponding to catalyst suicide (Figure
[¹]
).
<A NAME="RU00409ST-15A">15a</A>
Nishizawa M.
Yadav VK.
Skwarczynski M.
Takao H.
Imagawa H.
Sugihara T.
Org.
Lett.
2003,
5:
1609
<A NAME="RU00409ST-15B">15b</A>
Nishizawa M.
Takao H.
Yadav VK.
Imagawa H.
Sugihara T.
Org.
Lett.
2003,
5:
4563
<A NAME="RU00409ST-15C">15c</A>
Imagawa H.
Iyenaga T.
Nishizawa M.
Org.
Lett.
2005,
7:
451
<A NAME="RU00409ST-15D">15d</A>
Imagawa H.
Iyenaga T.
Nishizawa M.
Synlett
2005,
703
<A NAME="RU00409ST-15E">15e</A>
Kurisaki T.
Naniwa T.
Yamamoto H.
Imagawa H.
Nishizawa M.
Tetrahedron
Lett.
2007,
48:
1871
<A NAME="RU00409ST-15F">15f</A>
Imagawa H.
Kurisaki T.
Nishizawa M.
Org.
Lett.
2004,
6:
3679
<A NAME="RU00409ST-15G">15g</A>
Yamamoto H.
Nishiyama M.
Imagawa H.
Nishizawa M.
Tetrahedron Lett.
2006,
47:
8369
<A NAME="RU00409ST-15H">15h</A>
Imagawa H.
Kinoshita A.
Fukuyama T.
Yamamoto H.
Nishizawa M.
Tetrahedron
Lett.
2006,
47:
4729
<A NAME="RU00409ST-15I">15i</A>
Yamamoto H.
Pandey G.
Asai Y.
Nakano M.
Kinoshita A.
Namba K.
Imagawa Nishizawa M.
Org Lett.
2007,
9:
4029
<A NAME="RU00409ST-15J">15j</A>
Imagawa H.
Asai Y.
Takano H.
Hamagaki H.
Nishizawa M.
Org. Lett.
2006,
8:
447
<A NAME="RU00409ST-15K">15k</A>
Nishizawa M.
Hirakawa H.
Nakagawa Y.
Yamamoto H.
Namba K.
Imagawa H.
Org Lett.
2007,
9:
5577
<A NAME="RU00409ST-15L">15l</A>
Yamamoto H.
Sasaki I.
Imagawa H.
Nishizawa M.
Org. Lett.
2007,
9:
1399
<A NAME="RU00409ST-15M">15m</A>
Namba K.
Yamamoto H.
Sasaki I.
Mori K.
Imagawa H.
Nishizawa M.
Org. Lett.
2008,
10:
1767
<A NAME="RU00409ST-15N">15n</A>
Namba K.
Nakagawa Y.
Yamamoto H.
Imagawa H.
Nishizawa M.
Synlett
2008,
1719
<A NAME="RU00409ST-16A">16a</A>
Ménard D.
Vidal A.
Barthomeuf C.
Lebreton J.
Gosselin P.
Synlett
2006,
57
<A NAME="RU00409ST-16B">16b</A>
Sim SH.
Lee SI.
Seo J.
Chung YK.
J.
Org. Chem.
2007,
72:
9818
<A NAME="RU00409ST-16C">16c</A>
Muratake H.
Natsume M.
Tetrahedron
2006,
62:
7071
<A NAME="RU00409ST-17">17</A>
Yamamoto H.
Sasaki I.
Hirai Y.
Namba K.
Imagawa H.
Nishizawa M.
Angew. Chem. Int. Ed.
2009, in
press
<A NAME="RU00409ST-18A">18a</A>
Liu B.
De Brabander JK.
Org.
Lett.
2006,
8:
4907
<A NAME="RU00409ST-18B">18b</A>
Jalce G.
Franck X.
Seon-Meniel B.
Hocquemiller R.
Figadère B.
Tetrahedron
Lett.
2006,
47:
5905
<A NAME="RU00409ST-19">19</A>
Typical Experimental
Procedure
To a stirred mixture of dec-5-yn-1-ol (3, 280 mg, 2 mmol) and H2O (108
mg, 6 mmol) in MeCN (6.6 mL) was added a solution of Hg(OTf)2 (0.1
M MeCN soln, 0.2 mL, 0.02 mmol) at r.t., and the mixture was stirred
for 5 min at the same temperature. After addition of Et3N
(30 µL) and then brine (6 mL), the organic materials were
extracted with Et2O. Dried and concentrated extract was
subjected to a column chromatography on SiO2 using hexane
and EtOAc (2:1) as an eluent to give 1-hydroxydecan-5-one (4, 275 mg, 90% yield) as a colorless
oil.²0a
<A NAME="RU00409ST-20A">20a</A>
Kuhakarn C.
Kittigowittana K.
Pohmakotr M.
Peutrakul V.
Tetrahedron
2005,
61:
8995
<A NAME="RU00409ST-20B">20b</A>
Miyashita M.
Suzuki T.
Hoshino M.
Yoshikoshi A.
Tetrahedron
1997,
53:
12469
<A NAME="RU00409ST-20C">20c</A>
Cavicchiol S.
Savoia D.
Trombini C.
Umani-Ronchi A.
J. Org. Chem.
1984,
49:
1246
<A NAME="RU00409ST-20D">20d</A>
Fuji K.
Node M.
Usami Y.
Chem.
Lett.
1986,
961
<A NAME="RU00409ST-20E">20e</A>
Yang SB.
Gan FF.
Chen GJ.
Xu PF.
Synlett
2008,
2532
<A NAME="RU00409ST-20F">20f</A>
Murata S.
Tatsuda I.
Synthesis
1978,
221
<A NAME="RU00409ST-20G">20g</A>
Taillier C.
Bellosta V.
Meyer C.
Cossy J.
Org. Lett.
2004,
6:
2145
<A NAME="RU00409ST-20H">20h</A>
Ljubović E.
Šunjić V.
Synthesis
2001,
423
<A NAME="RU00409ST-21">21</A>
All new compounds were fully characterized
by spectroscopic methods.