Abstract
Epigallocatechin gallate (EGCG) is a major green tea polyphenol with pronounced antioxidative
activity. The effects of EGCG on lifespan and stress resistance in wild-type N2 and
transgenic strains of Caenorhabditis elegans [hsp-16.2/GFP, mev-1(kn1), fem-1(hc17)] were investigated. The expression of hsp-16.2 (induced by the pro-oxidant juglone) and the intracellular levels of H2O2 were inhibited by EGCG treatment. Daily administration of 220 μM EGCG increased the mean lifespan by 10.14 % and 14.27 % in N2 and fem-1(hc17) strains, respectively, and 55 μM EGCG increased the mean lifespan in mev-1(kn1) by 16.11 %. The survival rate was also increased under lethal oxidative stress by
65.05 %. These findings suggest that the increased mean lifespan and stress resistance
in C. elegans apparently depend, among other factors, on the antioxidant properties of EGCG.
Key words
EGCG -
Caenorhabditis elegans (Rhabditidae) - lifespan - free radicals - juglone -
Camellia sinensis (Theaceae)
References
- 1 Weisburger J H. Tea antioxidants and health. In: Cardenas E, Packer L, editors
Handbook of antioxidants. New York; Marcel Dekker 1996: 469-86
- 2 Van Wyk B A, Wink M. Medicinal plants of the world. Portland; Timber 2004: 388-91
- 3
Wink M.
Wie funktionieren Phytopharmaka? Wirkmechanismen der Vielstoffgemische.
Z Phytother.
2005;
26
262-79
- 4
Hollman P CH, Feskens E JM, Katan M B.
Tea flavonols in cardiovascular disease and cancer epidemiology.
Proc Soc Exp Biol Med.
1999;
220
198-202
- 5
Guo Q, Zhao B L, Shen S R, Hou J W, Hu J G, Xin W J.
ESR study on the structure-antioxidant activity relationship of tea catechins and
their epimers.
Biochim Biophys Acta.
1999;
1427
13-23
- 6
Beal M F.
Aging, energy, and oxidative stress in neurodegenerative diseases.
Ann Neurol.
1995;
38
357-66
- 7
Harman D.
Aging: a theory based on free radical and radiation chemistry.
J Gerontol Biol Sci.
1956;
11
298-300
- 8
Harman D.
Free radical theory of aging.
Mutat Res.
1992;
275
257-66
- 9
Brenner S.
The genetics of Caenorhabditis elegans.
Genetics.
1974;
77
71-94
- 10
Glenn C F, Chow D K, David L, Cooke C A, Gami M S, Iser W B. et al .
Behavioral deficits during early stages of aging in Caenorhabditis elegans result from locomotory deficits possibly linked to muscle frailty.
J Gerontol A Biol Sci Med Sci.
2004;
59
1251-60
- 11
Lakowski B, Hekimi S.
The genetics of caloric restriction in Caenorhabditis elegans.
.
Proc Natl Acad Sci USA.
1998;
95
13 091-6
- 12
Klass M R.
Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span.
Mech Ageing Dev.
1977;
6
413-29
- 13
Blois M S.
Antioxidant determinations by the use of a stable free radical.
Nature.
1958;
26
1199-200
- 14
Robak J, Gryglewski R J.
Flavonoids are scavengers of superoxide anions.
Biochem Pharmacol.
1988;
37
837-41
- 15
Sulston J, Hodgkin J.
Methods. In: Wood WB, editor. The nematode Caenorhabditis elegans.
Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
Press;
1988
587-606
- 16
Apfeld J, Kenyon G.
Regulation of lifespan by sensory perception in Caenorhabditis elegans.
.
Nature.
1999;
402
804-9
- 17
Ishii N, Fujii M, Hartman P S, Tsuda M, Yasuda K, Senoo-Matsuda N. et al .
A mutation in succinate dehydrongenase cytochrome b causes oxidative stress and aging
in nematodes.
Nature.
1998;
394
694-7
- 18
Liu Z Q, Ma L P, Zhou B, Yang L, Liu Z L.
Antioxidative effects of green tea polyphenols on free radical initiated and photosensitized
peroxidation of human low density lipoprotein.
Chem Phys Lipids.
2000;
106
53-63
- 19
Hu C, Kitts D D.
Evaluation of antioxidant activity of epigallocatechin gallate in biphasic model systems
in vitro.
.
Mol Cell Biochem.
2001;
218
147-55
- 20
Wickens A P.
Aging and the free radical theory.
Respir Physiol.
2001;
128
379-91
- 21
Brown M K, Evans J L, Luo Y.
Beneficial effects of natural antioxidants EGCG and α-lipoic acid on lifespan and
age-dependent behavioral declines in Caenorhabditis elegans.
.
Pharmacol Biochem Behav.
2006;
85
620-8
- 22
Strayer A, Wu Z, Christen Y, Link C D, Luo Y.
Expression of the small heat-shock protein Hsp-16 – 2 in Caenorhabditis elegans is suppressed by Ginkgo biloba extract EGb 761.
FASEB J.
2003;
17
2305-7
- 23
Gutierrez-Zepeda A, Santell R, Wu Z, Brown M, Wu Y, Khan I. et al .
Soy isoflavone glycitein protects against beta amyloid-induced toxicity and oxidative
stress in transgenic Caenorhabditis elegans.
BMC Neurosci.
2005;
6
54
- 24
Link C D, Cypser J R, Johnson C J, Johnson T E.
Direct observation of stress response in Caenorhabditis elegans using a reporter transgene.
Cell Stress Chaperones.
1999;
4
235-42
- 25
Hassan H M, Fridovich I.
Intracellular production of superoxide radical and of hydrogen peroxide by redox active
compounds.
Arch Biochem Biophys.
1979;
196
385-95
- 26
Sampayo J N, Olsen A, Lithgow G J.
Oxidative stress in Caenorhabditis elegans: protective effects of superoxide dismutase/catalase mimetics.
Aging Cell.
2003;
2
319-26
- 27
Weisburger J H.
Tea and health: a historical perspective.
Cancer Lett.
1997;
114
315-7
- 28
Wilson M A, Shukitt-Hale B, Kalt W, Ingram D K, Joseph J A, Wolkow C A.
Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans.
.
Aging Cell.
2006;
5
59-68
- 29
Wu Z, Smith J V, Paramasivam V, Butko P, Khan I, Cypser J R. et al .
Ginkgo biloba extract EGb 761 increases stress resistance and extends life span of Caenorhabditis elegans.
.
Cell Mol Biol.
2002;
48
725-31
- 30
Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R.
A C. elegans mutant that lives twice as long as wild type.
Nature.
1993;
366
461-4
Prof. Dr. M. Wink
Institute of Pharmacy and Molecular Biotechnology
Department of Biology
University of Heidelberg
Im Neuenheimer Feld 364
96120 Heidelberg
Germany
Telefon: +49-6221-54-4880
Fax: +49-6221-54-4884
eMail: wink@uni-hd.de