ABSTRACT
This review reports the current knowledge of microRNA (miRNA) expression in pituitary
adenomas, focusing on recent microarray data. Moreover, a discussion is provided concerning
the possible role of validated and putative targets of the most dysregulated miRNA
in pituitary adenoma pathogenesis.
KEYWORDS
MicroRNA - pituitary - pituitary adenoma
REFERENCES
- 1
Bartel D P.
MicroRNAs: genomics, biogenesis, mechanism, and function.
Cell.
2004;
116
281-297
- 2
Kloosterman W P, Plasterk R H.
The diverse functions of microRNAs in animal development and disease.
Dev Cell.
2006;
11
441-450
- 3
Du T, Zamore P D.
microPrimer: the biogenesis and function of microRNA.
Development.
2005;
132
4645-4652
- 4
Zeng Y.
Principles of micro-RNA production and maturation.
Oncogene.
2006;
25
6156-6162
- 5
He L, Hannon G J.
MicroRNAs: small RNAs with a big role in gene regulation.
Nat Rev Genet.
2004;
5
522-531
- 6
Bushati N, Cohen S M.
microRNA functions.
Annu Rev Cell Dev Biol.
2007;
23
175-205
- 7
Vasudevan S, Tong Y, Steitz J A.
Switching from repression to activation: microRNAs can up-regulate translation.
Science.
2007;
318
1931-1934
- 8
Filipowicz W, Bhattacharyya S N, Sonenberg N.
Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?.
Nat Rev Genet.
2008;
9
102-114
- 9
Esau C, Kang X, Peralta E et al..
MicroRNA-143 regulates adipocyte differentiation.
J Biol Chem.
2004;
279
52361-52365
- 10
Poy M N, Eliasson L, Krutzfeldt J et al..
A pancreatic islet-specific microRNA regulates insulin secretion.
Nature.
2004;
432
226-230
- 11
Cuellar T L, McManus M T.
MicroRNAs and endocrine biology.
J Endocrinol.
2005;
187
327-332
- 12
Bak M, Silahtaroglu A, Møller M et al..
MicroRNA expression in the adult mouse central nervous system.
RNA.
2008;
14
432-444
- 13
Farh K K, Grimson A, Jan C et al..
The widespread impact of mammalian microRNAs on mRNA repression and evolution.
Science.
2005;
310
1817-1821
- 14
Landgraf P, Rusu M, Sheridan R et al..
A mammalian microRNA expression atlas based on small RNA library sequencing.
Cell.
2007;
129
1401-1414
- 15
Vadstrup S.
The adaptation of TSH secretion to autonomy in non-toxic goiter may be based-on active
regulation of set-point and sensitivity of central TSH-receptors, perhaps by the microRNA
(MIR) gene.
Med Hypotheses.
2006;
67
588-591
- 16
Bates A S, Farrell W E, Bicknell E J et al..
Allelic deletion in pituitary adenomas reflects aggressive biological activity and
has potential value as a prognostic marker.
J Clin Endocrinol Metab.
1997;
82
818-824
- 17
Fan X, Paetau A, Aalto Y et al..
Gain of chromosome 3 and loss of 13q are frequent alterations in pituitary adenomas.
Cancer Genet Cytogenet.
2001;
128
97-103
- 18
Knuutila S, Aalto Y, Autio K et al..
DNA copy number losses in human neoplasms.
Am J Pathol.
1999;
155
683-694
- 19
Pei L, Melmed S, Scheithauer B, Kovacs K, Benedict W F, Prager D.
Frequent loss of heterozygosity at the retinoblastoma susceptibility gene (Rb) locus
in aggressive pituitary tumors: evidence for a chromosome 13 tumor uppressor gene
other than Rb.
Cancer Res.
1995;
55
1613-1616
- 20
Calin G A, Dumitru C D, Shimizu M et al..
Frequent deletions and down-regulation ofmicro-RNA genes miR15 and miR16 at 13q14
in chronic lymphocytic leukaemia.
Proc Natl Acad Sci U S A.
2002;
99
15524-15529
- 21
Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli M C, degli Uberti E C.
miR-15a and miR-16–1 down-regulation in pituitary adenomas.
J Cell Physiol.
2005;
204
280-285
- 22
Cimmino A, Calin G A, Fabbri M et al..
miR-15 and miR-16 induce apoptosis by targeting BCL2.
Proc Natl Acad Sci U S A.
2005;
103
13944-13949
- 23
Wang D G, Johnston C F, Atkinson A B, Heaney A P, Mirakhur M, Buchanan K D.
Expression of bcl-2 oncoprotein in pituitary tumours: comparison with cmyc.
J Clin Pathol.
1996;
49
795-797
- 24
Ibba M, Soll D.
Aminoacyl-tRNA synthesis.
Annu Rev Biochem.
2000;
69
617-650
- 25
Quevillon S, Robinson J C, Berthonneau E, Siatecka M, Mirande M.
Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein–protein
interactions and characterization of a core protein.
J Mol Biol.
1999;
285
183-195
- 26
Shalak V, Kaminska M, Mitnacht-Kraus R, Vandenabeele P, Clauss M, Mirande M.
The EMAPII cytokine is released from the mammalian multisynthetase complex after cleavage
of its p43/proEMAPII component.
J Biol Chem.
2001;
276
23769-23776
- 27
Schwarz M A, Kandel J, Brett J et al..
Endothelial-monocyte activating polypeptide II, a novel antitumor cytokine that suppresses
primary and metastatic tumor growth and induces apoptosis in growing endothelial cells.
J Exp Med.
1999;
190
341-343
- 28
Bottoni A, Vignali C, Piccin D et al..
Proteasomes and RARS modulate AIMP1/EMAP II secretion in human cancer cell lines.
J Cell Physiol.
2007;
212
293-297
- 29
Bottoni A, Zatelli M C, Ferracin M et al..
Identification of differentially expressed microRNAs by microarray: a possible role
for microRNA genes in pituitary adenomas.
J Cell Physiol.
2007;
210
370-377
- 30
Liu C G, Calin G A, Meloon B et al..
An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse
tissues.
Proc Natl Acad Sci U S A.
2004;
101
9740-9744
- 31
Volinia S, Calin G A, Liu C G et al..
A microRNA expression signature of human solid tumors defines cancer gene targets.
Proc Natl Acad Sci U S A.
2006;
103
2257-2261
- 32
Pagotto U, Arzberger T, Theodoropoulou M et al..
The expression of the antiproliferative gene ZAC is lost or highly reduced in nonfunctioning
pituitary adenomas.
Cancer Res.
2000;
60
6794-6799
- 33
Spengler D, Villalba M, Hoffmann A et al..
Regulation of apoptosis and cell cycle arrest by Zac1, a novel zinc finger protein
expressed in the pituitary gland and the brain.
EMBO J.
1997;
16
2814-2825
- 34
Abdollahi A, Bao R, Hamilton T C.
LOT1 is a growth suppressor gene down-regulated by the epidermal growth factor receptor
ligands and encodes a nuclear zinc-finger protein.
Oncogene.
1999;
18
6477-6487
- 35
Pagotto U, Arzberger T, Ciani E et al..
Inhibition of Zac1, a new gene differentially expressed in the anterior pituitary,
increases cell proliferation.
Endocrinology.
1999;
140
987-996
- 36
Theodoropoulou M, Zhang J, Laupheimer S et al..
Octreotide, a somatostatin analogue mediates its antiproliferative action in pituitary
tumor cells by altering phosphatidylinositol 3-kinase signaling and inducing Zac1
expression.
Cancer Res.
2006;
66
1576-1582
- 37
Cheng A M, Byrom M W, Shelton J, Ford L P.
Antisense inhibition of human miRNAs and indications for an involvement of miRNA in
cell growth and apoptosis.
Nucleic Acids Res.
2005;
33
1290-1297
- 38
Iorio M V, Ferracin M, Liu C G et al..
MicroRNA gene expression deregulation in human breast cancer.
Cancer Res.
2005;
65
7065-7070
- 39
Takamizawa J, Konishi H, Yanagisawa K et al..
Reduced expression of the let-7 microRNAs in human lung cancers in association with
shortened postoperative survival.
Cancer Res.
2004;
64
3753-3756
- 40
Sempere L F, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V.
Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs
with possible roles in murine and human neuronal differentiation.
Genome Biol.
2004;
5
R13
- 41
Ciafre S A, Galardi S, Mangiola A et al..
Extensive modulation of a set of microRNAs in primary glioblastoma.
Biochem Biophys Res Commun.
2005;
334
1351-1358
- 42
Seitz H, Youngson N, Lin S P et al..
Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like
gene.
Nat Genet.
2003;
34
261-262
- 43
Youngson N, Kocialkowski S, Peel N, Ferguson-Smith A C.
A small family of sushi-class retrotransposon derived genes in mammals and their relation
to genomic imprinting.
J Mol Evol.
2005;
61
481-490
- 44
Georgiades P, Watkins M, Surani M A, Ferguson-Smith A C.
Parental origin-specific developmental defects in mice with uniparental disomy for
chromosome 12.
Development.
2000;
127
4719-4728
- 45
Reik W, Constancia M, Fowden A et al..
Regulation of supply and demand for maternal nutrients in mammals by imprinted genes.
J Physiol.
2003;
547
35-44
- 46
Asa S L, Ezzat S.
The cytogenesis and pathogenesis of pituitary adenomas.
Endocr Rev.
1998;
19
798-827
- 47
Cheng A M, Byrom M W, Shelton J, Ford L P.
Antisense inhibition of human miRNAs and indications for an involvement of miRNA in
cell growth and apoptosis.
Nucleic Acids Res.
2005;
33
1290-1297
- 48
Hebert C, Norris K, Scheper M A, Nikitakis N, Sauk J J.
High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma.
Mol Cancer.
2007;
6
5-16
- 49
Reeves R, Nissen M S.
The A-T-DNA-binding domain of mammalian high mobility group I chromosomal proteins.
A novel peptide motif for recognizing DNA structure.
J Biol Chem.
1990;
265
8573-8582
- 50
Thanos D, Maniatis T.
Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome.
Cell.
1995;
83
1091-1100
- 51
Fedele M, Battista S, Manfioletti G, Croce C M, Giancotti V, Fusco A.
Role of the high mobility group A proteins in human lipomas.
Carcinogenesis.
2001;
22
1583-1591
- 52
Fedele M, Battista S, Kenyon L et al..
Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas.
Oncogene.
2002;
21
3190-3198
- 53
Finelli P, Pierantoni G M, Giardino D et al..
The high mobility group A2 gene is amplified and overexpressed in human prolactinomas.
Cancer Res.
2002;
62
2398-2405
- 54
Fedele M, Pierantoni G M, Visone R, Fusco A.
Critical role of the HMGA2 gene in pituitary adenomas.
Cell Cycle.
2006;
5
2045-2048
- 55
McCabe C J, Boelaert K, Tannahill L A et al..
Vascular endothelial growth factor, its receptor KDR/Flk-1, and pituitary tumor transforming
gene in pituitary tumors.
J Clin Endocrinol Metab.
2002;
87
4238-4244
- 56
Niveiro M, Aranda F I, Peiró G, Alenda C, Picó A.
Immunohistochemical analysis of tumor angiogenic factors in human pituitary adenomas.
Hum Pathol.
2005;
36
1090-1095
- 57
Onofri C, Theodoropoulou M, Losa M et al..
Localization of vascular endoelial growth factor (VEGF) receptors in normal and adenomatous
pituitaries: detection of a non-endothelial function of VEGF in pituitary tumours.
J Endocrinol.
2006;
191
249-261
- 58 Macleod R M, Thorner M O, Scapagnini U. Basic and Clinical Correlates. Padova,
Italy; Liviana Press 1995: 641-653
- 59
Zatelli M C, Piccin D, Vignali C et al..
Pasireotide, a multiple somatostatin receptor subtypes ligand, reduces cell viability
in non-functioning pituitary adenomas by inhibiting vascular endothelial growth factor
secretion.
Endocr Relat Cancer.
2007;
14
91-102
Prof. Ettore C degli Uberti
Section of Endocrinology, Department of Biomedical Sciences and Advanced Therapies,
University of Ferrara
Via Savonarola 9, 44100 Ferrara, Italy
eMail: dut@unife.it