Zusammenfassung
Einleitung: Das hämodynamische Monitoring von Patienten mit Sepsis ist aufgrund der Diskrepanz
von Makrohämodynamik und Organmikrozirkulation erschwert. Die Pulskonturanalyse (PiCCO®-System)
beinhaltet neue Parameter zur besseren Beurteilung des Volumenstatus kritisch kranker
Patienten. Dennoch besitzen Veränderungen von Regionalkreisläufen, insbesondere des
Splanchnikusgebietes, eine besondere Wertigkeit für die Pathophysiologie der Sepsis.
Ziel unserer Untersuchungen war daher der Vergleich von makrohämodynamischen Parametern
(PiCCO®-System) mit der sublingualen Mikrozirkulation (OPS-Imaging) als indirektes
Messverfahren für die Perfusion des Splanchnikusgebietes bei Patienten mit schwerer
Sepsis im Multiorganversagen. Methodik: Es erfolgten mehrfache Untersuchungen im 24-stündigen Abstand an insgesamt 7 Patienten
mit septischem Schock und Multiorgandysfunktion (APACHE II-Score > 25) mittels PiCCO®-Monitoring
und dem Orthogonal-Polarization-Spectral(OPS)-Imaging. Durch das PiCCO®- Monitoring
wurden sämtliche makrohämodynamischen Parameter bestimmt. Das OPS-Imaging wurde für
jeweils 20 s an 6 verschiedenen Lokalisationen sublingual durchgeführt, zur indirekten
Beurteilung der Perfusion des Hepatosplanchnikusgebietes. Mittels computerassistierter
Bildverarbeitungsanalyse erfolgte die quantitative Erfassung der Gefäßdichte mit Einteilung
in kleine und große Gefäße (< 25 bzw. > 25 µm) und der Strömungsgeschwindigkeit in
Venolen. Ergebnisse: Es zeigte sich eine signifikante Korrelation zwischen der venolären Strömungsgeschwindigkeit
und dem systemischen vaskulären Widerstands-Index (r2 = 0,252; p < 0,05), dem mittleren arteriellen Blutdruck (r2 = 0,259; p < 0,05) sowie dem pH-Wert (r2 = 0,265; p < 0,05). Weiterhin fand sich eine signifikante Beziehung zwischen dem
Sauerstofftransport-Index und der Dichte der kleinen Gefäße (r2 = 0,355; p < 0,05). Diskussion: Unsere Untersuchungen zeigen, dass die durch das PiCCO®-Monitoring gewonnenen Daten
zu einer Beurteilung der Mikrozirkulation während schwerer Sepsis und Multiorganversagen
herangezogen werden können. Das OPS-Imaging von nichtinvasiv zugängigen, für das Splanchnikusgebiet
repräsentativen Lokalisationen ist für die Charakterisierung der Mikrozirkulation
die genauere Untersuchungsmethode, bedarf jedoch einer umfangreichen und zeitaufwendigen
Auswertung.
Abstract
Background: Haemodynamic monitoring of septic patients is impeded by the discrepancy between
the macrohaemodynamics and the microcirculation of internal organs. Pulse contour
analysis (PiCCO®) provides new parameters for an improved assessment of the volume
status of critically ill patients. However, changes in regional circulation, in particular
those affecting the splanchnic perfusion, have proven to be especially important.
The aim of our study was to compare macrohaemodynamic parameters (PiCCO®) with microcirculation
(OPS imaging) in severely septic patients with multiple organ failure. Patients and Methods: In seven patients suffering from septic shock and multiple organ failure (APACHE II
score > 25) repeated examinations at a twenty-four hour interval were carried out
by PiCCO® monitoring and OPS imaging. OPS data were recorded for twenty seconds at
6 different buccal and sublingual localisations, adequately reflecting microvascular
perfusion of the liver and the small intestine. Data were videotaped for off-line
analysis, calculating current velocity in small and large venules (< 25 and > 25 µm),
as well as functional capillary density. Results: Significant correlations were found for current velocity in small venules with systemic
vascular resistance (r2 = 0.252, p < 0.05), mean arterial blood pressure (r2 = 0.259, p < 0.05), and pH value (r2 = 0.265, p < 0.05). In addition, a significant correlation was found between the
oxygen transport index and the density of small vessels (r2 = 0.355; p < 0.05). Conclusion: According to our findings, data acquired through PiCCO® monitoring may be used for
a rough estimation of the microcirculation during severe sepsis and multiple organ
failure. For an assessment of the local conditions of perfusion, however, there are
limits in the use of the parameters that were the object of our research. For the
measurement at localisations which are accessible non-invasively and representative
of the splanchnic perfusion, OPS is the more accurate method for characterisation
of the microcirculation, although a more extensive and time-consuming analysis is
needed.
Schlüsselwörter
Mikrozirkulation - Hepatosplanchnikusgebiet - OPS-Imaging - Sepsis
Key words
microcirculation - hepatosplanchnic perfusion - OPS imaging - sepsis
Literatur
1
Berkenstadt H, Margalit N, Hadani M et al.
Stroke volume variation as a predictor of fluid responsiveness in patients undergoing
brain surgery.
Anesth Analg.
2001;
92
984-989
2
De Backer D, Creteur J, Preiser J C et al.
Microvascular blood flow is altered in patients with sepsis.
Am J Respir Crit Care Med.
2002;
166
98-104
3
Godje O, Hoke K, Lamm P et al.
Continuous, less invasive, hemodynamic monitoring in intensive care after cardiac
surgery.
Thorac Cardiovasc Surg.
1998;
46
242-249
4
Godje O, Hoke K, Goetz A E et al.
Reliability of a new algorithm for continuous cardiac output determination by pulse-contour
analysis during hemodynamic instability.
Crit Care Med.
2002;
30
52-58
5
Harris A G, Sinitsina I, Messmer K.
The Cytoscan Model E-II, a new reflectance microscope for intravital microscopy: comparison
with the standard fluorescence method.
J Vasc Res.
2000;
37
469-476
6
Harris A G, Sinitsina I, Messmer K.
Validation of OPS imaging for microvascular measurements during isovolumic hemodilution
and low hematocrits.
Am J Physiol Heart Circ Physiol.
2002;
282
H 1502-H 1509
7
Kimura S, Yoshioka T, Shibuya M et al.
Indocyanine green elimination rate detects hepatocellular dysfunction early in septic
shock and correlates with survival.
Crit Care Med.
2001;
29
1159-1163
8
Knaus W A, Draper E A, Wagner D P et al.
APACHE II: a severity of disease classification system.
Crit Care Med.
1985;
13
818-829
9 Langer S, Dobschuetz E, Harris A G et al. Validation of the orthogonal Spectral
Imaging Technique on solid organs. In: Messmer K, ed. Orthogonal Polarization Spectral
imaging. Prog Appl Microcirc. Basel: Karger; 2000: (24) 32–46
10
Marik P E.
Sublingual capnography: a clinical validation study.
Chest.
2001;
120
923-927
11
Mathura K R, Vollebregt K C, Boer K et al.
Comparison of OPS imaging and conventional capillary microscopy to study the human
microcirculation.
J Appl Physiol.
2001;
91
74-78
12
Nakagawa Y, Weil M H, Tang W et al.
Sublingual capnometry for diagnosis and quantitation of circulatory shock.
Am J Respir Crit Care Med.
1998;
157
1838-1843
13 Sakka S G, Meier-Hellmann A. Indocyanine green for the assessment of liver function
in critically ill patients. In: Vincent JL, ed. Yearbook of Intensive Care and Emergency
Medicine. Berlin, Heidelberg, New-York: Springer; 2001: 611–618
14
Sakka S G, Reinhart K, Meier-Hellmann A.
Prognostic value of the indocyanine green plasma disappearance rate in critically
ill patients.
Chest.
2002;
122
1715-1720
15
Sakr Y, Dubois M J, De Backer D et al.
Persistent microcirculatory alterations are associated with organ failure and death
in patients with septic shock.
Crit Care Med.
2004;
32
1825-1831
16
Schaser K D, Puhl G, Vollmar B et al.
In vivo imaging of human pancreatic microcirculation and pancreatic tissue injury
in clinical pancreas transplantation.
Am J Transplant.
2005;
5
341-350
17
Schmitz V, Schaser K D, Olschewski P et al.
In vivo visualization of early microcirculatory changes following ischemia / reperfusion
injury in human kidney transplantation.
Eur Surg Res.
2008;
40
19-25
18
Stechmiller J K, Treloar D, Allen N.
Gut dysfunction in critically ill patients: a review of the literature.
Am J Crit Care.
1997;
6
204-209
19 Sturm J A. Entwicklung und Bedeutung der Lungenwassermessung in Klinik und Experiment. In:
Beiträge zur Anästhesiologie und Intensivmedizin. Wien: Maudrich; 1988: 15–39
20 Tugtekin I, Theisen M, Matejovic M et al. Endotoxin-induced ileal mucosal acidosis
is associated with impaired villus microcirculation in pigs. In: Messmer K, ed. Orthogonal
Polarization Spectral imaging. Prog Appl Microcirc. Basel: Karger; 2000: (24) 61–69
21
Vincent J L, Moreno R, Takala J et al.
The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction / failure.
On behalf of the Working Group on Sepsis-Related Problems of the European Society
of Intensive Care Medicine.
Intensive Care Med.
1996;
22
707-710
22
Weil M H, Nakagawa Y, Tang W et al.
Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation
of severity of circulatory shock.
Crit Care Med.
1999;
27
1225-1229
23
Zollner C, Haller M, Weis M et al.
Beat-to-beat measurement of cardiac output by intravascular pulse contour analysis:
a prospective criterion standard study in patients after cardiac surgery.
J Cardiothorac Vasc Anesth.
2000;
14
125-129
Dr. med. R. Wießner
Klinikum Südstadt Rostock · Klinik für Chirurgie
Südring 81
18059 Rostock
Telefon: 03 81 / 44 01 40 00
Fax: 03 81 / 44 01 40 99
eMail: reiko.wiessner@kliniksued-rostock.de