Int J Sports Med 2009; 30(4): 259-265
DOI: 10.1055/s-0028-1105941
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Body Composition of Female Wheelchair Athletes

L. Sutton 1 , J. Wallace 2 , V. Goosey-Tolfrey 3 , M. Scott 1 , T. Reilly 1
  • 1Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
  • 2Sport and Exercise Science, Aberystwyth University, Aberystwyth, United Kingdom
  • 3Sport and Exercise Sciences, Loughborough University, Leicestershire, United Kingdom
Further Information

Publication History

accepted after revision September 26, 2008

Publication Date:
13 March 2009 (online)

Abstract

Wheelchair users undergo changes in body composition as a result of disability. In this study the distribution of bone mineral, lean and fat mass was assessed in highly-trained female wheelchair athletes and a reference group by dual-energy X-ray absorptiometry (DXA). The transferability of anthropometric equations commonly used in female groups was examined in order to establish a suitable field method of body composition assessment. The DXA total-body results indicated no difference between groups, but segmental analyses uncovered regional differences. The wheelchair athletes had greater BMD (p=0.088), more lean mass (p<0.001) and a lower percent fat (p=0.050) in their arms. The reverse was true of the legs (p≤0.001). The trunk as a whole did not differ between groups. In general, the anthropometric equations showed a lack of transferability to the wheelchair group and tended to underestimate total percent body fat. Anthropometric measures such as body mass index (BMI) and waist girth showed strong correlations with body fat in the wheelchair group (BMI: r=0.90, p=0.001; waist: r=0.83, p=0.001), but weaker results in the reference group. It is recommended that specific anthropometric equations be developed for use in the absence of a ‘gold standard’ measure of body composition such as DXA.

References

  • 1 Allison GT, Singer KP, Marshall RN. The effect of body position on bioelectrical resistance in individuals with spinal cord injury.  Disabil Rehabil. 1995;  17 424-429
  • 2 Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurements.  Lancet. 1986;  i 307-310
  • 3 Bland JM, Altman DG. Measuring agreement in method comparison studies.  Stat Methods Med Res. 1999;  8 135-160
  • 4 Bulbulian R, Johnson RE, Gruber JJ, Darabos B. Body composition in paraplegic male athletes.  Med Sci Sports Exerc. 1987;  19 195-201
  • 5 Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years.  Br J Nutr. 1974;  32 77-97
  • 6 Ellis KJ. Human body composition: in vivo methods.  Physiol Rev. 2000;  80 649-680
  • 7 Formica C, Atkinson MG, Nyulasi I, MacKay J, Heale W, Seeman E. Body composition following hemodialysis: studies using dual-energy X-ray absorptiometry and bioelectrical impedance analysis.  Osteoporos Int. 1993;  3 192-197
  • 8 Goktepe AS, Yilmaz B, Alaca R, Yazicioglu K, Mohur H, Gunduz S. Bone density loss after spinal cord injury: elite paraplegic basketball players vs. paraplegic sedentary persons.  Am J Phys Med Rehabil. 2004;  83 279-283
  • 9 Goris M, Vanlandewijck YC, Kiekens C, Dequeker J. Body composition in spinal cord athletes. In: Van Coppenolle H, Vanlandewijck YC, Van de Vliet P, Simons J, eds. Second European Conference on Adapted Physical Activity and Sports: Health, Well-being and employment. Leuven: Acco 1996: 229-231
  • 10 Inukai Y, Takahashi K, Wang DH, Kira S. Assessment of total and segmental body composition in spinal cord-injured athletes in Okayama prefecture of Japan.  Acta Med Okayama. 2006;  60 99-106
  • 11 Jackson AS, Pollock ML, Ward A. Generalised equations for predicting body density of women.  Med Sci Sports Exerc. 1980;  12 175-182
  • 12 Jones LM, Goulding A, Gerrard DF. DXA: a practical and accurate tool to demonstrate total and regional bone loss, lean tissue loss and fat mass gain in paraplegia.  Spinal Cord. 1998;  36 637-640
  • 13 Jones LM, Legge M, Goulding A. Intensive exercise may preserve bone mass of the upper limbs in spinal cord injured males but does not retard demineralisation of the lower body.  Spinal Cord. 2002;  40 230-235
  • 14 Jones LM, Legge M, Goulding A. Healthy body mass index values often underestimate body fat in men with spinal cord injury.  Arch Phys Med Rehabil. 2003;  84 1068-1071
  • 15 Katch FI, McArdle WD. Prediction of body density from simple anthropometric measurements in college-age men and women.  Hum Biol. 1973;  45 445-455
  • 16 Lean ME, Han TS, Deurenberg P. Predicting body composition by densitometry from simple anthropometric measurements.  Am J Clin Nutr. 1996;  63 4-14
  • 17 Leclercq MM, Bonidan O, Haaby E, Pierrejean C, Sengler J. Study of bone mass with dual-energy X-ray absorptiometry in a population of 99 lower limb amputees.  Ann Readapt Med Phys. 2003;  46 24-30
  • 18 Lewiecki EM. Update on bone density testing.  Curr Osteoporosis Reports. 2005;  3 136-142
  • 19 Maggioni M, Bertoli S, Margonato V, Merati G, Veicsteinas A, Testolin G. Body composition assessment in spinal cord injury subjects.  Acta Diabetol. 2003;  40 S183-186
  • 20 Modlesky CM, Bickel CS, Slade JM, Meyer RA, Cureton KJ, Dudley GA. Assessment of skeletal muscle mass in men with spinal cord injury using dual-energy X-ray absorptiometry and magnetic resonance imaging.  J Appl Physiol. 2004;  96 561-565
  • 21 Pluskiewicz W, Drozdowska B, Lyssek-Boron A, Bielecki T, Adamczyk P, Sawaryn P, Misolek M. Densitometric and quantitative ultrasound measurements and laboratory investigations in wheelchair-bound patients.  J Clin Densitom. 2006;  9 78-83
  • 22 Prior BM, Cureton KJ, Modlesky CM, Evans EM, Sloniger MA, Saunders M, Lewis RD. In vivo validation of whole body composition estimates from dual-energy X-ray absorptiometry.  J Appl Physiol. 1997;  83 623-630
  • 23 Rush PJ, Wong JS, Kirsh J, Devlin M. Osteopenia in patients with above knee amputation.  Arch Phys Med Rehabil. 1994;  75 112-115
  • 24 Sloan AW, Weir JB. Nomograms for prediction of body density and total body fat from skinfold measurements.  J Appl Physiol. 1970;  28 221-222
  • 25 Tsuzuku S, Ikegami Y, Yabe K. Bone mineral density differences between paraplegic and quadriplegic patients: a cross-sectional study.  Spinal Cord. 1999;  37 358-361
  • 26 Uematsu J, Ishizuka C, Yanagi K, Tomita Y, Takaya K, Shimada M. Measurement of total body and leg bone mineral densities by dual energy X-ray absorptiometry in severely handicapped children and adults.  Brain Dev. 1995;  27 203-209
  • 27 Wang Z, Deurenberg P, Wang W, Pietrobelli A, Baumgartner RN, Heymsfield SB. Hydration of fat-free body mass: review and critique of a classic body-composition constant.  Am J Clin Nutr. 1999;  69 833-841
  • 28 Wilmore JH, Behnke AR. An anthropometric estimation of body density and lean body weight in young women.  Am J Clin Nutr. 1970;  23 267-274
  • 29 Withers RT, Whittingham NO, Norton KI, La Forgia J, Ellis MW, Crockett A. Relative body fat and anthropometric prediction of body density of female athletes.  Eur J Appl Physiol. 1987;  56 169-180

Correspondence

L. SuttonBSc Sport Science 

Sport and Exercise Science

Liverpool John Moores University

Henry Cotton Building

Liverpool

United Kingdom

L3 2ET

Phone: +0151/231/43 19

Fax: +0151/231/43 53

Email: L.Sutton@2003.ljmu.ac.uk