Int J Sports Med 2009; 30(4): 233-239
DOI: 10.1055/s-0028-1105949
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Effects of Arm Frequency during Synchronous and Asynchronous Wheelchair Propulsion on Efficiency

J. P. Lenton 1 , 2 , L. van der Woude 3 , N. Fowler 1 , V. Goosey-Tolfrey 1 , 2
  • 1Department of Exercise & Sport Science, The Manchester Metropolitan University, Stoke-On-Trent, United Kingdom
  • 2Department of Sport and Exercise Sciences, Loughborough University, Leicestershire, United Kingdom
  • 3Faculty of Human Movement Sciences, Research Institute MOVE, VU University Amsterdam, Amsterdam, Netherlands
Further Information

Publication History

accepted after revision October 4, 2008

Publication Date:
06 February 2009 (online)

Abstract

To further understand the possible underlying mechanisms of the low efficiencies in hand rim wheelchair propulsion, this study examined efficiency indices at different arm frequencies during two propulsion modes (synchronous and asynchronous). Fourteen male able-bodied participants performed V˙O2PEAK tests for both propulsion modes. Subsequently two sub-maximal exercise tests examining synchronous and asynchronous propulsion were completed at an individualised velocity (60% of V˙O2PEAK). The freely chosen arm frequency (FCF), followed by four counter-balanced trials at 60, 80, 120, and 140% of FCF were performed. Gross, net, and work efficiency were determined. Gross efficiency was significantly lower (p<0.05) at arm frequencies >100%, and participants were more efficient between 60 to 100% FCF. These arm frequencies corresponded to 76±22 to 126±36 and 70±18 to 116±30 pushes·min−1(synchronous and asynchronous respectively). Trends in V˙O2, gross and work efficiency suggest that 80% of FCF produced the best economy and efficiency during both propulsion modes (non-significant). Gross and work efficiency at 80% FCF were 6.8±0.7% and 13.0±4.6% for synchronous and 7.0±0.8% and 11.5±1.6% for asynchronous respectively. The results suggest that during both modes of propulsion the FCF is not necessarily the most efficient.

References

  • 1 Ahlquist LE, Bassett DR, Sufit R, Nagle FJ, Thomas DP. The effect of pedaling frequency on glycogen depletion rates in type I and type II quadriceps muscle fibers during submaximal cycling exercise.  Eur J Appl Physiol. 1992;  65 360-364
  • 2 Amazeen PG, Amazeen EL, Beek PJ. Coupling of breathing and movement during manual wheelchair propulsion.  J Exp Psychol Hum Percept Perform. 2001;  27 1243-1259
  • 3 Dallmeijer AJ, Ottjes L, de Waardt E, van der Woude LHV. A physiological comparison of synchronous and asynchronous hand cycling.  Int J Sports Med. 2004;  25 1-5
  • 4 Fabre N, Perrey S, Arbez L, Ruiz J, Tordi N, Rouillon JD. Degree of coordination between breathing and rhythmic arm movements during hand rim wheelchair propulsion.  Int J Sports Med. 2006;  27 67-74
  • 5 Gaesser GA, Brooks GA. Muscular efficiency during steady-rate exercise: effects of speed and work rate.  J Appl Physiol. 1975;  38 1132-1139
  • 6 Glaser RM, Sawka MN, Young RE, Suryaprasad AG. Applied physiology for wheelchair design.  J Physiol. 1980;  48 41-44
  • 7 Goosey VL, Campbell IG. Pushing economy and wheelchair propulsion technique at three speeds.  Adapt Phys Activ Q. 1998;  15 36-50
  • 8 Goosey VL, Campbell IG, Fowler NE. Effect of push frequency on the economy of wheelchair racers.  Med Sci Sports Exerc. 2000;  32 174-181
  • 9 Goosey-Tolfrey VL, Batterham AM, Tolfrey K. Scaling behaviour of peak in trained wheelchair athletes.  Med Sci Sports Exerc. 2003;  35 2106-2211
  • 10 Goosey-Tolfrey VL, Kirk JH. Effect of push frequency and strategy variations on economy and perceived exertion during wheelchair propulsion.  Eur J Appl Physiol. 2003;  90 153-158
  • 11 Hopman MTE, Teeffelen WM, Brouwer J van, Houtman S, Binkhorst RA. Physiological responses to asynchronous and synchronous arm-cranking exercise.  Eur J Appl Physiol. 1995;  72 111-114
  • 12 Hintzy F, Tordi N. Mechanical efficiency during hand-rim wheelchair propulsion: effects of base-line subtraction and power output.  Clin Biomech. 2004;  19 343-349
  • 13 Hintzy F, Tordi N, Perrey S. Muscular efficiency during arm cranking and wheelchair exercise: A comparison.  Int J Sports Med. 2002;  23 408-414
  • 14 Lenton JP, Fowler N, Woude L van der, Goosey-Tolfrey VL. Efficiency of wheelchair propulsion and effects of strategy.  Int J Sports Med. 2007;  28 1-6
  • 15 Mossberg K, Willman C, Topor MA, Crook H, Patak S. Comparison of asynchronous versus synchronous arm crank ergometry.  Spinal Cord. 1999;  37 569-574
  • 16 Peronnet F, Massicotte D. Table of non-protein respiratory quotient: an update.  Can J Sport Sci. 1991;  16 23-29
  • 17 Seabury JJ, Adams WC, Ramey MR. Influence of pedalling rate and power output on energy expenditure during bicycle ergometry.  Ergonomics. 1977;  20 491-498
  • 18 Smith PM, Doherty M, Price MJ. The effect of crank rate on physiological responses and exercise efficiency using a range of submaximal workloads during arm crank ergometry.  Int J Sports Med. 2006;  27 199-204
  • 19 Theisen D, Francaux M, Fayt A, Sturbois X. A new procedure to determine external power output during hand-rim wheelchair propulsion on a roller ergometer: A reliability study.  Int J Sports Med. 1996;  17 564-571
  • 20 Van Dieen JH, Ogita F, De Haan A. Reduced neural drive in bilateral exertions: a performance-limiting factor?.  Med Sci Sports Exerc. 2003;  35 111-118
  • 21 Vanlandewijck YC, Spaepen AJ, Lysens RJ. Wheelchair propulsion efficiency: movement pattern adaptations to speed changes.  Med Sci Sports Exerc. 1994;  26 1373-1381
  • 22 Woude LHV van der, Bosmans I, Bervoets B, Veeger HEJ. Handcycling: different modes and gear ratios.  J Med Eng Tech. 2000;  24 242-249
  • 23 Woude LHV van der, Formanoy M, Groot S de. Hand rim configuration: effects on physical strain and technique in unimpaired subjects?.  Med Eng Phys. 2003;  25 765-774
  • 24 Woude LHV van der, Groot G de, Hollander AP, Ingen Schenau GJ van, Rozendal RH. Wheelchair ergonomics and physiological testing of prototypes.  Ergonomics. 1986;  29 1561-1573
  • 25 Woude LHV van der, Veeger HEJ, Dallmeijer AJ, Janssen TWJ, Rozendal LA. Biomechanics and physiology in active manual wheelchair propulsion.  Med Eng Phys. 2001;  23 713-733
  • 26 Woude LHV van der, Veeger HEJ, Rozendal RH, Sargeant AJ. Optimum cycle frequencies in hand-rim wheelchair propulsion.  Wheelchair propulsion technique. Eur J Appl Physiol. 1989;  58 625-632
  • 27 Veeger HEJ, Woude LHV van der, Rozendal RH. Within-cycle characteristics of the wheelchair push in sprinting on a wheelchair ergometer.  Med Sci Sports Exerc. 1991;  23 264-271
  • 28 Veeger HEJ, Woude LHV van der, Rozendal RH. Effect of hand-rim velocity on mechanical efficiency in wheelchair propulsion.  Med Sci Sports Exerc. 1992;  24 100-107
  • 29 Whipp BJ, Wasserman K. Efficiency of muscular work.  J Appl Physiol. 1969;  26 644-648

Correspondence

Dr. V. Goosey-Tolfrey

Department of Sport and Exercise Sciences

Loughborough University

Epinal Way

Leicestershire

United Kingdom

LE11 3TU

Phone: +15/09/22 63 86

Fax: +15/09/22 63 86

Email: v.l.tolfrey@lboro.ac.uk