Rofo 2009; 181(2): 161-168
DOI: 10.1055/s-0028-1109040
Herz

© Georg Thieme Verlag KG Stuttgart · New York

Assessment of Left Ventricular Function Parameters with a New Three-Dimensional Shape Model

Bestimmung linksventrikulärer Funktionsparameter mittels eines neuen dreidimensionalen OberflächenmodellsP. M. Bansmann1 , J. Sénégas2 , K. Muellerleile3 , G. Lund1 , J. Kemper1 , G. Adam1 , A. Stork1
  • 1Klinik und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Hamburg Eppendorf
  • 2Philips Research Europe, Philips
  • 3Klinik und Poliklinik für Kardiologie/Angiologie, Universitätsklinikum Hamburg Eppendorf
Further Information

Publication History

received: 20.8.2008

accepted: 4.11.2008

Publication Date:
27 January 2009 (online)

Zusammenfassung

Ziel: Untersuchung eines 3 D-Oberflächenmodells des linken Ventrikels (LV), welches die Berechnung von LV-Funktionsparametern anhand kurzer (KA) und langer Achsen (LA) ermöglicht. Vergleich mit herkömmlicher Simpson-Methode bei gesunden Probanden und in einem Patientenkollektiv. Material und Methoden: Cine-Bildgebung erfolgte mit einer prospektiv getriggerten SSFP-Sequenz: trueFISP: TR 3,6 ms, TE 1,8 ms, bFFE: TR 3,0 ms, TE 1,4 ms, Flipwinkel 60°, Auflösung 1,37 × 1,37 mm, Schichtdicke 8 mm, Schichtabstand 2 mm in KA-Orientierung von Apex bis Basis sowie in radialer LA-Orientierung (Rotationswinkel 15°) bei 11 gesunden Probanden und 27 Patienten mit Mitralklappeninsuffizienz. Das 3 D-Modell wurde an die manuell segmentierten Konturen angepasst. Fünf unterschiedliche Volumenberechnungsmethoden wurden verglichen: Simpson-Methode basierend auf alle KA (M0), 3 D-Oberflächenmodell basierend auf alle KA (M1a), 3 D-Oberflächenmodell basierend auf 3 KA (M1b), 3 D-Oberflächenmodell basierend auf alle KA und LA (M2a) und 3 D-Oberflächenmodell basierend auf 3 KA und 1 LA (M2b). Ergebnisse: M 0 und M 1a ergeben vergleichbare Ergebnisse (r: 0,99, b: 0,98). M 2a resultiert in größeren Volumina als M 0 aufgrund der Einbeziehung der LA-Konturen (b: 0,85). M 1b erzielt vergleichbare Volumina wie M 0 (r: 0,99, b: 1,02). M 2b erzielt vergleichbare Volumina wie M 2a (r: 0,99, b: 0,94). M 2b und M 0 ergeben vergleichbare Ergebnisse in dem Patientenkollektiv (r: 0,99, b: 0,97). Schlussfolgerung: Das vorgestellte 3D-Oberflächenmodell ermöglicht die Berücksichtigung von Konturinformationen, welche in unterschiedlichen Ebenen akquiriert wurden und deckt den linken Ventrikel durch Kombination von KA und LA genauer ab. Selbst mit einer reduzierten Anzahl segmentierter Konturen kann eine ausreichend genaue Oberflächenanpassung erfolgen.

Abstract

Purpose: To evaluate a 3D model of the left ventricle (LV) which allows calculation of LV function parameters on the basis of both short axis (SA) and long axis (LA) cine acquisitions. Comparison with the conventional Simpson’s rule method in a volunteer and patient collective. Materials and Methods: Cine imaging was performed with a prospectively triggered SSFP sequence: trueFISP: TR 3.6 msec, TE 1.8 msec, bFFE: TR 3.0 msec, TE 1.4 msec, flip angle 60°, resolution 1.37 × 1.37 mm, slice thickness 8 mm, gap 2 mm in SA orientation from apex to basis and in radial LA orientation (spacing 15°) in 11 volunteers and 27 patients with mitral valve insufficiency. Five different volume computations were compared: Simpson’s rule based on all SA slices (M0), 3D shape model based on all SA slices (M1a), 3D shape model based on 3 SA slices (M1b), 3D shape model based on all SA and LA slices (M2a), and 3D shape model based on 3 SA slices and 1 LA slice (M2b). Results: M 0 and M 1a give similar results (r: 0.99, b: 0.98). M 2a produces larger volumes than M 0 (b: 0.85) due to the inclusion of the LA contours. M 1b effectively reproduces the volumes computed with M 0 (r: 0.99, b: 1.02). M 2b effectively reproduces the volumes computed with M 2a (r: 0.99, b: 0.94). M 2b and M 0 give similar results in the patient collective (r: 0.99, b: 0.97). Conclusion: The proposed 3D shape model allows merging of information acquired in different orientations and thus the combination of SA and LA contours with better coverage of the left ventricle. It provides a suitable fit with a reduced number of segmented contours.

References

  • 1 Koren M J, Devereux R B, Casale P N. et al . Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension.  Ann Intern Med. 1991;  114 345-352
  • 2 Levy D, Garrison R J, Savage D D. et al . Left ventricular mass and incidence of coronary heart disease in an elderly cohort. The Framingham Heart Study.  Ann Intern Med. 1989;  110 101-107
  • 3 Levy D, Garrison R J, Savage D D. et al . Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study.  N Engl J Med. 1990;  322 1561-1566
  • 4 White H D, Norris R M, Brown M A. et al . Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction.  Circulation. 1987;  76 44-51
  • 5 Carabello B A. Evolution of the study of left ventricular function: everything old is new again.  Circulation. 2002;  105 2701-2703
  • 6 Pattynama P M, Lamb H J, Velde E A. et al . Left ventricular measurements with cine and spin-echo MR imaging: a study of reproducibility with variance component analysis.  Radiology. 1993;  187 261-268
  • 7 Dulce M C, Mostbeck G H, Friese K K. et al . Quantification of the left ventricular volumes and function with cine MR imaging: comparison of geometric models with three-dimensional data.  Radiology. 1993;  188 371-376
  • 8 Aurigemma van der G, Davidoff A, Silver K. et al . Left ventricular mass quantitation using single-phase cardiac magnetic resonance imaging.  Am J Cardiol. 1992;  70 259-262
  • 9 Sakuma H, Fujita N, Foo T K. et al . Evaluation of left ventricular volume and mass with breath-hold cine MR imaging.  Radiology. 1993;  188 377-380
  • 10 Semelka R C, Tomei E, Wagner S. et al . Normal left ventricular dimensions and function: interstudy reproducibility of measurements with cine MR imaging.  Radiology. 1990;  174 763-768
  • 11 Weiss J L, Shapiro E P, Buchalter M B. et al . Magnetic resonance imaging as a noninvasive standard for the quantitative evaluation of left ventricular mass, ischemia, and infarction.  Ann N Y Acad Sci. 1990;  601 95-106
  • 12 Lorenz C H. The range of normal values of cardiovascular structures in infants, children, and adolescents measured by magnetic resonance imaging.  Pediatr Cardiol. 2000;  21 37-46
  • 13 Lorenz C H, Walker E S, Morgan V L. et al . Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging.  J Cardiovasc Magn Reson. 1999;  1 7-21
  • 14 Rominger M B, Bachmann G F, Pabst W. et al . Left ventricular heart volume determination with fast MRI in breath holding technique: how different are quantitative heart catheter, quantitative MRI and visual echocardiography?.  Fortschr Röntgenstr. 2000;  172 23-32
  • 15 Rominger M B, Bachmann G F, Geuer M. et al . Comparison of left and right ventricular ejection and filling parameters of the heart using cine-MRI with breath holding technique. Clinical study of 42 patients with cardiomyopathy and coronary heart disease.  Fortschr Röntgenstr. 1999;  170 534-541
  • 16 Bloomer T N, Plein S, Radjenovic A. et al . Cine MRI using steady state free precession in the radial long axis orientation is a fast accurate method for obtaining volumetric data of the left ventricle.  J Magn Reson Imaging. 2001;  14 685-692
  • 17 Debatin J F, Nadel S N, Sostman H D. et al . Magnetic resonance imaging – cardiac ejection fraction measurements. Phantom study comparing four different methods.  Invest Radiol. 1992;  27 198-204
  • 18 Bloomgarden D C, Fayad Z A, Ferrari V A. et al . Global cardiac function using fast breath-hold MRI: validation of new acquisition and analysis techniques.  Magn Reson Med. 1997;  37 683-692
  • 19 Katz J, Milliken M C, Stray-Gundersen J. et al . Estimation of human myocardial mass with MR imaging.  Radiology. 1988;  169 495-498
  • 20 Clay S, Alfakih K, Radjenovic A. et al . Normal range of human left ventricular volumes and mass using steady state free precession MRI in the radial long axis orientation.  MAGMA. 2006;  19 41-45
  • 21 Swingen C, Wang X, Jerosch-Herold M. Evaluation of myocardial volume heterogeneity during end-diastole and end-systole using cine MRI.  J Cardiovasc Magn Reson. 2004;  6 829-835
  • 22 Kirschbaum S W, Baks T, Gronenschild E H. et al . Addition of the long-axis information to short-axis contours reduces interstudy variability of left-ventricular analysis in cardiac magnetic resonance studies.  Invest Radiol. 2008;  43 1-6
  • 23 Marcus J T, Gotte M J, DeWaal L K. et al . The influence of through-plane motion on left ventricular volumes measured by magnetic resonance imaging: implications for image acquisition and analysis.  J Cardiovasc Magn Reson. 1999;  1 1-6
  • 24 Frangi A F, Niessen W J, Viergever M A. Three-dimensional modeling for functional analysis of cardiac images: a review.  IEEE Trans Med Imaging. 2001;  20 2-25
  • 25 Matheny A, Goldgof D B. The Use of Three- and Four-Dimensional Surface Harmonics for Rigid and Nonrigid Shape Recovery and Representation.  IEEE Transactions on Pattern Analysis and Machine Analysis. 1995;  17 967-981
  • 26 Rehr R B, Malloy C R, Filipchuk N G. et al . Left ventricular volumes measured by MR imaging.  Radiology. 1985;  156 717-719
  • 27 Papavassiliu T, Kuhl H P, Dockum van W. et al . Accuracy of one- and two-dimensional algorithms with optimal image plane position for the estimation of left ventricular mass: a comparative study using magnetic resonance imaging.  J Cardiovasc Magn Reson. 2004;  6 845-854
  • 28 Danias P G, Chuang M L, Parker R A. et al . Relation between the number of image planes and the accuracy of three-dimensional echocardiography for measuring left ventricular volumes and ejection fraction.  Am J Cardiol. 1998;  82 1431-1434
  • 29 Verdecchia P, Schillaci G, Borgioni C. et al . Prognostic significance of serial changes in left ventricular mass in essential hypertension.  Circulation. 1998;  97 48-54
  • 30 Torp-Pedersen C, Kober L. Effect of ACE inhibitor trandolapril on life expectancy of patients with reduced left-ventricular function after acute myocardial infarction. TRACE Study Group. Trandolapril Cardiac Evaluation.  Lancet. 1999;  354 9-12
  • 31 Konstam M A, Rousseau M F, Kronenberg M W. et al . Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dysfunction in patients with heart failure. SOLVD Investigators.  Circulation. 1992;  86 431-438
  • 32 Fieno D S, Hillenbrand H B, Rehwald W G. et al . Infarct resorption, compensatory hypertrophy, and differing patterns of ventricular remodeling following myocardial infarctions of varying size.  J Am Coll Cardiol. 2004;  43 2124-2131
  • 33 Schroeder A P, Houlind K, Pedersen E M. et al . Serial magnetic resonance imaging of global and regional left ventricular remodeling during 1 year after acute myocardial infarction.  Cardiology. 2001;  96 106-114
  • 34 Saeed M, Lee R J, Weber O. et al . Scarred myocardium imposes additional burden on remote viable myocardium despite a reduction in the extent of area with late contrast MR enhancement.  Eur Radiol. 2006;  16 827-836
  • 35 Niendorf T, Sodickson D K. Highly accelerated cardiovascular MR imaging using many channel technology: concepts and clinical applications.  Eur Radiol. 2008;  18 87-102
  • 36 Wintersperger B J, Sincleair S, Runge V M. et al . Dual breath-hold magnetic resonance cine evaluation of global and regional cardiac function.  Eur Radiol. 2007;  17 73-80
  • 37 Niendorf T, Sodickson D. Acceleration of cardiovascular MRI using parallel imaging: basic principles, practical considerations, clinical applications and future directions.  Fortschr Röntgenstr. 2006;  178 15-30
  • 38 Sénégas J, Bansmann P M, Stork A. Assessment of cardiac function with a three-dimensional shape model based on surface harmonics.  Proc Int Soc Magn Reson Med. 2006;  14 847
  • 39 Berg J, Lorenz C H. Towards a Comprehensive Geometric Model of the Heart.  Lecture Notes in Computer Science. 2005;  3504 102-112

Dr. Paul Martin Bansmann

KardioMR Köln/Bonn, Krankenhaus Porz am Rhein

Urbacher Weg 19

51149 Köln

Phone: ++ 49/22 03/5 66 13 60

Fax: ++ 49/22 03/5 66 13 89

Email: pmbansmann@gmx.de