RSS-Feed abonnieren
DOI: 10.1055/s-0028-1109168
© Georg Thieme Verlag KG Stuttgart · New York
Pharmakokinetische MRT der Prostata: Parameter zur Unterscheidung von Low-grade- und High-grade-Prostatakarzinomen
Pharmacokinetic MRI of the Prostate: Parameters for Differentiating Low-Grade and High-Grade Prostate CancerPublikationsverlauf
eingereicht: 17.9.2008
angenommen: 30.12.2008
Publikationsdatum:
07. April 2009 (online)

Zusammenfassung
Ziel: Es sollte geprüft werden, ob die pharmakokinetischen MRT-Parameter Perfusion, Blutvolumen, mittlere Transit Zeit (MTT), interstitielles Volumen, Permeabilität, Extraktionskoeffizient, Verzögerungszeit und Dispersion für die Unterscheidung von Low-grade (Gleason-Score ≤ 6) und High-grade Prostatakarzinomen (Gleason-Score ≥ 7) geeignet sind. Material und Methoden: 42 Patienten mit stanzbioptisch gesichertem Prostatakarzinom (PSA: 2,7 bis 31,4 ng/ml) wurden vor geplanter Prostatektomie mit der dynamischen kontrastmittelgestützten inversionspräparierten Dual-Contrast-Gradienten-Echo-Sequenz (zeitliche Auflösung: 1,65 s) bei 1,5 Tesla mit der kombinierten Endorektal-Body-Phased-Array-Spule untersucht. Die Berechnung der Parameterkarten erfolgte mit einem sequenziellen 3-Kompartiment-Modell und entsprechenden Nachverarbeitungsalgorithmen. Bei 32 Patienten konnten 41 Prostatakarzinomareale (15 × low-grade, 26 × high-grade) nach Korrelation mit den Prostatektomiepräparaten ausgewertet werden. Ergebnisse: Low-grade Prostatakarzinome zeigten im Mittel ein größeres Blutvolumen (1,76 % vs. 1,64 %, p = 0,039), eine längere MTT (6,39 s vs. 3,25 s, p < 0,001) und eine geringere Permeabilität (2,57 min-1 vs. 3,86 min-1, p = 0,011) als High-grade Prostatakarzinome. Kein statistisch signifikanter Unterschied fand sich für die Perfusion (p = 0,069), für das interstitielle Volumen (p = 0,849), für den Extraktionskoeffzienten (p = 0,615), für die Verzögerungszeit (p = 0,489) und die Dispersion (p = 0,306). Schlussfolgerungen: Blutvolumen, MTT und Permeabilität sind für eine Unterscheidung von Low-grade und High-grade Prostatakarzinomen geeignet. Im Rahmen des Therapieansatzes der „active surveillance” könnten diese Parameter dazu dienen, einen Progress im MRT nachzuweisen.
Abstract
Purpose: To investigate whether pharmacokinetic MRI parameters ”perfusion, blood volume, mean transit time (MTT), interstitial volume, permeability, extraction coefficient, delay, and dispersion” allow the differentiation of low-grade (Gleason score ≤ 6) and high-grade (Gleason score ≥ 7) prostate cancer. Materials and Method: Forty-two patients with prostate cancer verified by biopsy (PSA 2.7 to 31.4 ng/ml) and scheduled for prostatectomy underwent MRI at 1.5 Tesla using the dynamic contrast-enhanced inversion-prepared dual-contrast gradient echo sequence (temporal resolution, 1.65 s) and a combined endorectal body phased array coil. Parametric maps were computed using a sequential 3-compartment model and the corresponding post-processing algorithms. A total of 41 areas of prostate cancer (15 low-grade, 26 high-grade cancers) in 32 patients were able to be correlated with the prostatectomy specimens and were included in the analysis. Results: Low-grade prostate cancers had a higher mean blood volume (1.76 % vs. 1.64 %, p = 0.039), longer MTT (6.39 s vs. 3.25 s, p < 0.001), and lower mean permeability (2.57 min-1 vs. 3.86 min-1, p = 0.011) than high-grade cancers. No statistically significant difference was found for perfusion (p = 0.069), interstitial volume (p = 0.849), extraction coefficient (p = 0.615), delay (p = 0.489), and dispersion (p = 0.306). Conclusions: Blood volume, MTT, and permeability allow the differentiation of low-grade and high-grade prostate cancer. They may be used to detect cancer progression by MRI in patients managed by active surveillance.
Key words
prostate - MR diffusion/perfusion - MR functional imaging
Literatur
- 1
Stamey T A, Yang N, Hay A R. et al .
Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate.
N Engl J Med.
1987;
317
909-916
MissingFormLabel
- 2
Jemal A, Siegel R, Ward E. et al .
Cancer statistics, 2008.
CA Cancer J Clin.
2008;
58
71-96
MissingFormLabel
- 3
Etzioni R, Penson D F, Legler J M. et al .
Overdiagnosis due to prostate-specific antigen screening: lessons from U. S. prostate
cancer incidence trends.
J Natl Cancer Inst.
2002;
94
981-990
MissingFormLabel
- 4
Choo R, Klotz L, Danjoux C. et al .
Feasibility study: watchful waiting for localized low to intermediate grade prostate
carcinoma with selective delayed intervention based on prostate specific antigen,
histological and/or clinical progression.
J Urol.
2002;
167
1664-1669
MissingFormLabel
- 5
Dall’Era M A, Cooperberg M R, Chan J M. et al .
Active surveillance for early-stage prostate cancer: review of the current literature.
Cancer.
2008;
112
1650-1659
MissingFormLabel
- 6
Stephenson A J, Scardino P T, Eastham J A. et al .
Preoperative nomogram predicting the 10-year probability of prostate cancer recurrence
after radical prostatectomy.
J Natl Cancer Inst.
2006;
98
715-717
MissingFormLabel
- 7
Partin A W, Mangold L A, Lamm D M. et al .
Contemporary update of prostate cancer staging nomograms (Partin Tables) for the new
millennium.
Urology.
2001;
58
843-848
MissingFormLabel
- 8
Kulkarni G S, Lockwood G, Evans A. et al .
Clinical predictors of Gleason score upgrading: implications for patients considering
watchful waiting, active surveillance, or brachytherapy.
Cancer.
2007;
109
2432-2438
MissingFormLabel
- 9
Whittemore A S, Keller J B, Betensky R.
Low-grade, latent prostate cancer volume: predictor of clinical cancer incidence?.
J Natl Cancer Inst.
1991;
83
1231-1235
MissingFormLabel
- 10
Venkitaraman R, Norman A, Woode-Amissah R. et al .
Predictors of histological disease progression in untreated, localized prostate cancer.
J Urol.
2007;
178
833-837
MissingFormLabel
- 11
Prochnow D, Beyersdorff D, Warmuth C. et al .
Implementation of a rapid inversion-prepared dual-contrast gradient echo sequence
for quantitative dynamic contrast-enhanced magnetic resonance imaging of the human
prostate.
Magn Reson Imaging.
2005;
23
983-990
MissingFormLabel
- 12
Franiel T, Ludemann L, Rudolph B. et al .
Evaluation of normal prostate tissue, chronic prostatitis, and prostate cancer by
quantitative perfusion analysis using a dynamic contrast-enhanced inversion-prepared
dual-contrast gradient echo sequence.
Invest Radiol.
2008;
43
481-487
MissingFormLabel
- 13
Heinrich M, Uder M.
Nephrogene systemische fibrose nach Anwendung gadoliniumhaltiger Kontrastmittel –
ein Statuspapier zum aktuellen Stand des Wissens.
Fortschr Röntgenstr.
2007;
179
613-617
MissingFormLabel
- 14
Griswold M A, Jakob P M, Chen Q. et al .
Resolution enhancement in single-shot imaging using simultaneous acquisition of spatial
harmonics (SMASH).
Magn Reson Med.
1999;
41
1236-1245
MissingFormLabel
- 15
Rohlfing T, Russakoff D B, Denzler J. et al .
Progressive attenuation fields: fast 2D-3D image registration without precomputation.
Med Phys.
2005;
32
2870-2880
MissingFormLabel
- 16
Tofts P S, Brix G, Buckley D L. et al .
Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of
a diffusable tracer: standardized quantities and symbols.
J Magn Reson Imaging.
1999;
10
223-232
MissingFormLabel
- 17
Ludemann L, Grieger W, Wurm R. et al .
Quantitative measurement of leakage volume and permeability in gliomas, meningiomas
and brain metastases with dynamic contrast-enhanced MRI.
Magn Reson Imaging.
2005;
23
833-841
MissingFormLabel
- 18
Siegal J A, Yu E, Brawer M K.
Topography of neovascularity in human prostate carcinoma.
Cancer.
1995;
75
2545-2551
MissingFormLabel
- 19
Calamante F, Gadian D G, Connelly A.
Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using
singular value decomposition.
Magn Reson Med.
2000;
44
466-473
MissingFormLabel
- 20
Kershaw L E, Buckley D L.
Precision in measurements of perfusion and microvascular permeability with T 1-weighted
dynamic contrast-enhanced MRI.
Magn Reson Med.
2006;
56
986-992
MissingFormLabel
- 21
Gleason D F, Mellinger G T.
Prediction of prognosis for prostatic adenocarcinoma by combined histological grading
and clinical staging.
J Urol.
1974;
111
58-64
MissingFormLabel
- 22
Stamey T A, Freiha F S, McNeal J E. et al .
Localized prostate cancer. Relationship of tumor volume to clinical significance for
treatment of prostate cancer.
Cancer.
1993;
71
933-938
MissingFormLabel
- 23
Coakley F V, Chen I, Qayyum A. et al .
Validity of prostate-specific antigen as a tumour marker in men with prostate cancer
managed by watchful-waiting: correlation with findings at serial endorectal magnetic
resonance imaging and spectroscopic imaging.
BJU Int.
2007;
99
41-45
MissingFormLabel
- 24
Kandirali E, Boran C, Serin E. et al .
Association of extent and aggressiveness of inflammation with serum PSA levels and
PSA density in asymptomatic patients.
Urology.
2007;
70
743-747
MissingFormLabel
- 25
Kawakami J, Siemens D R, Nickel J C.
Prostatitis and prostate cancer: implications for prostate cancer screening.
Urology.
2004;
64
1075-1080
MissingFormLabel
- 26
Tarhan F, Orcun A, Kucukercan I. et al .
Effect of prostatic massage on serum complexed prostate-specific antigen levels.
Urology.
2005;
66
1234-1238
MissingFormLabel
- 27
Wiesinger B, Lichy M P, Nagele U. et al .
MR-Befundmuster der Prostata bei Patienten mit CCP Syndrom (chronic pelvic pain syndrome).
Fortschr Röntgenstr.
2008;
180
621-630
MissingFormLabel
- 28
Padhani A R, Dzik-Jurasz A.
Perfusion MR imaging of extracranial tumor angiogenesis.
Top Magn Reson Imaging.
2004;
15
41-57
MissingFormLabel
- 29
Gilles R, Guinebretiere J M, Shapeero L G. et al .
Assessment of breast cancer recurrence with contrast-enhanced subtraction MR imaging:
preliminary results in 26 patients.
Radiology.
1993;
188
473-478
MissingFormLabel
- 30
Hawighorst H.
Dynamic MR imaging in cervical carcinoma.
Radiology.
1999;
213
617-618
MissingFormLabel
- 31
Wang L, Mazaheri Y, Zhang J. et al .
Assessment of biologic aggressiveness of prostate cancer: correlation of MR signal
intensity with Gleason grade after radical prostatectomy.
Radiology.
2008;
246
168-176
MissingFormLabel
- 32
Zakian K L, Sircar K, Hricak H. et al .
Correlation of proton MR spectroscopic imaging with gleason score based on step-section
pathologic analysis after radical prostatectomy.
Radiology.
2005;
234
804-814
MissingFormLabel
- 33
Desouza N M, Riches S F, Vanas N J. et al .
Diffusion-weighted magnetic resonance imaging: a potential non-invasive marker of
tumour aggressiveness in localized prostate cancer.
Clin Radiol.
2008;
63
774-782
MissingFormLabel
- 34
Barth P J, Weingartner K, Kohler H H. et al .
Assessment of the vascularization in prostatic carcinoma: a morphometric investigation.
Hum Pathol.
1996;
27
1306-1310
MissingFormLabel
- 35
Kety S S.
Theory of blood-tissue exchange and its application to measurement of blood flow.
Meth Med Res.
1960;
8
223-227
MissingFormLabel
- 36
Weidner N, Carroll P R, Flax J. et al .
Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma.
Am J Pathol.
1993;
143
401-409
MissingFormLabel
- 37
Gerlowski L E, Jain R K.
Microvascular permeability of normal and neoplastic tissues.
Microvasc Res.
1986;
31
288-305
MissingFormLabel
- 38
Dvorak H F, Brown L F, Detmar M. et al .
Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability,
and angiogenesis.
Am J Pathol.
1995;
146
1029-1039
MissingFormLabel
- 39
Su M Y, Muhler A, Lao X. et al .
Tumor characterization with dynamic contrast-enhanced MRI using MR contrast agents
of various molecular weights.
Magn Reson Med.
1998;
39
259-269
MissingFormLabel
- 40
Bhujwalla Z M, Artemov D, Natarajan K. et al .
Vascular differences detected by MRI for metastatic versus nonmetastatic breast and
prostate cancer xenografts.
Neoplasia.
2001;
3
143-153
MissingFormLabel
- 41
Schned A R, Wheeler K J, Hodorowski C A. et al .
Tissue-shrinkage correction factor in the calculation of prostate cancer volume.
Am J Surg Pathol.
1996;
20
1501-1506
MissingFormLabel
- 42
Nicholson B, Schaefer G, Theodorescu D.
Angiogenesis in prostate cancer: biology and therapeutic opportunities.
Cancer Metastasis Rev.
2001;
20
297-319
MissingFormLabel
Dr. Tobias Franiel
Radiologie CCM, Charité – Universitätsmedizin Berlin
Schumannstraße 20 / 21
10098 Berlin
Telefon: ++ 49/30/4 50 62 73 27
Fax: ++ 49/30/4 50 52 79 10
eMail: tobias.franiel@charite.de