Zusammenfassung
Hintergrund: Beschreibung eines neuen Tiermodells zum besseren Verständnis der pathophysiologischen Mechanismen beim Glaukom. Material und Methoden: Von 40 weißen Riesenkaninchen wurden 30 Tiere behandelt, 10 Tiere dienten als Kontrollgruppe. Die Kaninchen wurden 3 Monate lang wiederholt mit Boli von Adrenalin-Hydrochlorid (0,1 mL einer 0,1 % Lösung) behandelt, welche ihnen in die Ohrvenen injiziert wurden. Die Kontrollgruppe erhielt statt Adrenalin physiologische Kochsalzlösung. Gemessen wurden der Augendruck (IOD) und die Abflussrate des Kammerwassers bei Beginn, während und nach der Behandlung (nach 4 – 6 Monaten, 7 – 9 Monaten und 10 – 12 Monaten). Ergebnisse: Im Vergleich zur Kontrollgruppe zeigten die mit Adrenalin behandelten Tiere während der Behandlung eine signifikante Steigerung des Augendrucks um 25 % und 12 Monate nach der Behandlung um 57 %. Ferner zeigte der Vergleich, dass die Abflussrate des Kammerwassers bei den behandelten Tieren um 16,5 % während der Behandlung zunahm und dann kontinuierlich um 60 % nach der Behandlung sank. Schlussfolgerungen: Das vorliegende Tiermodell dürfte für künftige Untersuchungen des Pathomechanismus beim Glaukom wertvoll sein.
Abstract
Background: The aim of this study was to develop a new animal model to enhance our understanding of the biological pathomechanisms involved in glaucoma. Materials and Methods: Forty white giant rabbits were divided into a treated (N = 30) and a control group (N = 10). Boli of adrenaline hydrochloride (0.1 mL 0.1 % solution) were repeatedly injected into the veins of the ears of the rabbits and physiological saline in the control group, respectively, for three months. Intraocular pressure (IOP) and outflow facility of the aqueous humour were measured prior to, during and after treatment (4 – 6 months, 7 – 9 months, 10 – 12 months). Results: In comparison to the control group, the adrenaline-treated group showed a significant increase in IOP both during treatment (25 %) and 12 months after treatment (57 %). Comparative analysis further showed that the aqueous humour outflow facility of the treated group increased by 16.5 % during the treatment, and showed a continuous decrease of 60 % after treatment. Conclusion: This rabbit model could be useful for further investigations of the pathomechanisms involved in glaucoma.
Schlüsselwörter
Glaukom - Tiermodell - Kaninchen
Key words
glaucoma - animal model - rabbit
References
1
Quigley H A.
Neuronal death in glaucoma.
Prog Retin Eye Res.
1999;
18
39-57
2
Weinreb R N, Lindsey J D.
The importance of models in glaucoma research.
J Glaucoma.
2005;
14
302-304
3
Shareef S R, Garcia-Valenzuela E, Salierno A. et al .
Chronic ocular hypertension following episcleral venous occlusion in rats.
Exp Eye Res.
1995;
61
379-382
4
Morrison J C.
Elevated intraocular pressure and optic nerve injury models in the rat.
J Glaucoma.
2005;
14
315-317
5
Morrison J C, Moore C G, Deppmeier L M. et al .
A rat model of chronic pressure-induced optic nerve damage.
Exp Eye Res.
1997;
64
85-96
6
Gaasterland D, Kupfer C.
Experimental glaucoma in the rhesus monkey.
Invest Ophthalmol.
1974;
13
455-457
7
Grozdanic S D, Betts D M, Sakaguchi D S. et al .
Temporary elevation of the intraocular pressure by cauterization of vortex and episcleral veins in rats causes functional deficits in the retina and optic nerve.
Exp Eye Res.
2003;
77
27-33
8
Emre M, Orgul S, Gugleta K. et al .
Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation.
Br J Ophthalmol.
2004;
88
662-666
9
Flammer J.
Glaucomatous optic neuropathy: a reperfusion injury.
Klin Monatsbl Augenheilkd.
2001;
218
290-291
10
Flammer J, Orgul S, Costa V. et al .
The impact of ocular blood flow in glaucoma.
Prog Retin Eye Res.
2002;
21
359-393
11
Grieshaber M C, Flammer J.
Blood flow in glaucoma.
Curr Opin Ophthalmol.
2005;
16
79-83
12
Brubaker R F, Gaasterland D.
The effect of isoproterenol on aqueous humor formation in humans.
Invest Ophthalmol Vis Sci.
1984;
25
357-359
13
Lu Y, Li M, Shen Y.
The effects of epinephrine and adrenergic antagonists on adenosine 3’, 5’-monophosphate level of bovine trabecular cells in vitro.
Zhonghua Yan Ke Za Zhi.
1998;
34
124-126
14
Pache M, Flammer J.
A sick eye in a sick body? Systemic findings in patients with primary open-angle glaucoma.
Surv Ophthalmol.
2006;
51
179-212
15
Klaver J H, Greve E L, Goslinga H. et al .
Blood and plasma viscosity measurements in patients with glaucoma.
Br J Ophthalmol.
1985;
69
765-770
16
Bonovas S, Filioussi K, Tsantes A. et al .
Epidemiological association between cigarette smoking and primary open-angle glaucoma: a meta-analysis.
Public Health.
2004;
118
256-261
17
Chisholm I A, Stead S.
Plasma lipid patterns in patients with suspected glaucoma.
Can J Ophthalmol.
1988;
23
164-167
18
Topouzis F, Coleman A L, Harris A. et al .
Association of blood pressure status with the optic disk structure in non-glaucoma subjects: the Thessaloniki eye study.
Am J Ophthalmol.
2006;
142
60-67
19
Stamer W D, Roberts B C, Howell D N. et al .
Isolation, culture, and characterization of endothelial cells from Schlemm’s canal.
Invest Ophthalmol Vis Sci.
1998;
39
1804-1812
20
Kobayashi T, Tahara Y, Matsumoto M. et al .
Roles of thromboxane A(2) and prostacyclin in the development of atherosclerosis in apoE-deficient mice.
J Clin Invest.
2004;
114
784-794
21
Nie Q, Fan J, Haraoka S. et al .
Inhibition of mononuclear cell recruitment in aortic intima by treatment with anti-ICAM-1 and anti-LFA-1 monoclonal antibodies in hypercholesterolemic rats: implications of the ICAM-1 and LFA-1 pathway in atherogenesis.
Lab Invest.
1997;
77
469-482
22
Smith J L.
Unilateral glaucoma in carotid occlusive disease.
JAMA.
1962;
182
683-684
23
Bergmanson J P.
The anatomy of the rabbit aqueous outflow pathway.
Acta Ophthalmol.
1985;
63
493-501
24
Nishida S, Uchida H, Takeuchi M. et al .
Scanning electron microscope study of the rabbit anterior chamber angle.
Med Mol Morphol.
2005;
38
54-62
25
Nakabayashi M.
Ischemic hypertension of pigeon eye.
Jpn J Ophthalmol.
2001;
45
128-136
26
Saxena N, Sharma M.
Cerebral infarction following carotid arterial injection of adrenaline.
Can J Anaesth.
2005;
52
119
27
Caspi J, Coles J G, Benson L N. et al .
Effects of high plasma epinephrine and Ca2 + concentrations on neonatal myocardial function after ischemia.
J Thorac Cardiovasc Surg.
1993;
105
59-67
28
Lalonde D, Bell M, Benoit P. et al .
A multicenter prospective study of 3,110 consecutive cases of elective epinephrine use in the fingers and hand: the Dalhousie Project clinical phase.
J Hand Surg.
2005;
30
1061-1067
29
Arfi A M, Kouatli A, Al-Ata J. et al .
Acute myocardial ischemia following accidental intravenous administration of epinephrine in high concentration.
Indian Heart J.
2005;
57
261-264
30
Reitsamer H A, Kiel J W.
A rabbit model to study orbital venous pressure, intraocular pressure, and ocular hemodynamics simultaneously.
Invest Ophthalmol Vis Sci.
2002;
43
3728-3734
31
Giuffre I, Taverniti L, Di Staso S.
The effects of 2 % ibopamine eye drops on the intraocular pressure and pupil motility of patients with open-angle glaucoma.
Eur J Ophthalmol.
2004;
14
508-513
32
Knepper P A, Farbman A I, Telser A G.
Aqueous outflow pathway glycosaminoglycans.
Exp Eye Res.
1981;
32
265-277
Prof. Dr. Peter Meyer
Augenklinik, Universitätsspital Basel
Mittlere Straße 91
4031 Basel
Switzerland
Email: meyerpe@uhbs.ch