RSS-Feed abonnieren
DOI: 10.1055/s-0028-1109394
© Georg Thieme Verlag KG Stuttgart · New York
Computer-Aided Pulmonary Nodule Detection – Performance of Two CAD Systems at Different CT Dose Levels
Computerassistierte Detektion (CAD) von Lungenrundherden in der Mehrschicht-Computertomografie – Ist die Leistungsfähigkeit von CAD-Systemen abhängig von der Dosis?Publikationsverlauf
received: 17.8.2008
accepted: 24.3.2009
Publikationsdatum:
17. Juni 2009 (online)
Zusammenfassung
Ziel: Effekt einer Dosisverringerung auf die computerassistierte Detektion (CAD) von Lungenrundherden in der Mehrschicht-Computertomografie (MSCT): CAD-Analyse an Ultra-Niedrigdosis- (ULD-CT) und Standarddosis-(SD-CT)CT-Daten. Material und Methoden: MSCT-Datensätze von 26 Patienten (13 Frauen, 13 Männer, 31 – 74 Jahre) wurden retrospektiv mittels zweier CAD-Systeme analysiert. Die CT-Daten waren konsekutiv mit 5 mAs (ULD-CT) sowie mit 75 mAs (SD-CT) bei einer Röhrenspannung von 120 kV akquiriert und mit einer Schichtdicke von 1 mm rekonstruiert worden. Indikationen für die computertomografische Untersuchung waren Tumorstaging bzw. -suche. Der Referenzstandard wurde von 3 erfahrenen Radiologen im Konsensus festgelegt. Zwei CAD-Algorithmen (CAD-System [Prototyp], Philips, Niederlande: CAD-1; LungCARE, Siemens, Deutschland: CAD-2) wurden an den 52 Datensätzen angewendet und die Ergebnisse der CAD-Analyse mit dem Referenzstandard verglichen. Ergebnisse: Mittels Konsensusanalyse wurden 253 Rundherde in SD-CT und ULD-CT als Referenzstandard festgelegt. Der Durchmesser der Rundherde betrug 2 bis 41 mm (Mittelwert: 4,8 mm). Die Detektionsraten erreichten 72 % (CAD-1) und 62 % (CAD-2) bei SD-CT sowie 73 % und 56 % bei ULD-CT. Die Anzahl der falsch positiven Befunde lag im Median bei jeweils 6 und 5 (SD-CT; CAD-1 vs. CAD-2) sowie bei 8 und 3 (ULD-CT). Die Detektionsrate für Rundherde mit einem Durchmesser von > 5 mm betrug 83 % und 61 % bei SD-CT sowie 89 % und 67 % bei ULD-CT (CAD-1 vs. CAD-2). Für beide CAD-Systeme gab es keine statistisch signifikanten Unterschiede zwischen der Detektionsrate bei SD-CT und ULD-CT (p > 0,05). Schlussfolgerung: Die Verringerung der Strahlendosis hatte keinen statistisch signifikanten Effekt auf die Detektion von Lungenrundherden der 2 getesteten CAD-Systeme bei vergleichbarer Anzahl der falsch positiven Befunde.
Abstract
Purpose: To evaluate the impact of dose reduction on the performance of computer-aided lung nodule detection systems (CAD) of two manufacturers by comparing respective CAD results on ultra-low-dose computed tomography (ULD-CT) and standard dose CT (SD-CT). Materials and Methods: Multi-slice computed tomography (MSCT) data sets of 26 patients (13 male and 13 female, patients 31 – 74 years old) were retrospectively selected for CAD analysis. Indication for CT examination was staging of a known primary malignancy or suspected pulmonary malignancy. CT images were consecutively acquired at 5 mAs (ULD-CT) and 75 mAs (SD-CT) with 120 kV tube voltage (1 mm slice thickness). The standard of reference was determined by three experienced readers in consensus. CAD reading algorithms (pre-commercial CAD system, Philips, Netherlands: CAD-1; LungCARE, Siemens, Germany: CAD-2) were applied to the CT data sets. Results: Consensus reading identified 253 nodules on SD-CT and ULD-CT. Nodules ranged in diameter between 2 and 41 mm (mean diameter 4.8 mm). Detection rates were recorded with 72 % and 62 % (CAD-1 vs. CAD-2) for SD-CT and with 73 % and 56 % for ULD-CT. Median false positive rates per patient were calculated with 6 and 5 (CAD-1 vs. CAD-2) for SD-CT and with 8 and 3 for ULD-CT. After separate statistical analysis of nodules with diameters of 5 mm and greater, the detection rates increased to 83 % and 61 % for SD-CT and to 89 % and 67 % for ULD-CT (CAD-1 vs. CAD-2). For both CAD systems there were no significant differences between the detection rates for standard and ultra-low-dose data sets (p > 0.05). Conclusion: Dose reduction of the underlying CT scan did not significantly influence nodule detection performance of the tested CAD systems.
Key words
thorax - neoplasms - CT spiral - computer-aided detection - radiation dose
References
- 1 Fischbach F, Knollmann F, Griesshaber V. et al . Detection of pulmonary nodules by multislice computed tomography: improved detection rate with reduced slice thickness. Eur Radiol. 2003; 13 2378-2383
- 2 Peloschek P, Sailer J, Weber M. et al . Pulmonary nodules: sensitivity of maximum intensity projection versus that of volume rendering of 3D multidetector CT data. Radiology. 2007; 243 561-569
- 3 Gurung J, Maataoui A, Khan M. et al . Automated Detection of Lung Nodules in Multidetector CT: Influence of Different Reconstruction Protocols on Performance of a Software Prototype. Fortschr Röntgenstr. 2006; 178 71-77
- 4 Honnef D, Behrendt F F, Bakai A. et al . Computerassistierte Detektion (CAD) von kleinen pulmonalen Rundherden in der Mehrdetektor-Spiral-Computertomografie (MDCT) bei Kindern. Fortschr Röntgenstr. 2008; 180 540-546
- 5 Marten K, Rummeny E J, Engelke C. Computerassistierter Nachweis und automatisierte Volumetrie pulmonaler Rundherde in der Multislice-CT: Aktueller Stand und Perspektiven. Fortschr Röntgenstr. 2005; 177 188-196
- 6 Vogel M N, Vonthein R, Schmücker S. et al . Lungenrundherdvolumetrie mit optimiertem Segmentierungsalgorithmus. Genauigkeit bei verschiedenen Schichtdicken verglichen mit ein- und zweidimensionalen Messungen. Fortschr Röntgenstr. 2008; 180 791-797
- 7 Bolte H, Riedel C, Knöss N. et al . Computed Tomography-Based Lung Module Volumetry – Do Optimized Reconstructions of Routine Protocols Achieve Similar Accuracy, Reproducibility and Interobserver Variability to that of Special Volumetry Protocols?. Fortschr Röntgenstr. 2007; 179 276-81
- 8 Glüer C C, Barkmann R, Hahn H K. et al . Parametrische biomedizinische Bildgebung – was macht die Qualität quantitativer radiologischer Verfahren aus?. Fortschr Röntgenstr. 2006; 178 1187-201
- 9 Diederich S, Wormanns D, Semik M. et al . Screening for early lung cancer with low-dose spiral CT: prevalence in 817 asymptomatic smokers. Radiology. 2002; 222 773-781
- 10 Nawa T, Nakagawa T, Kusano S. et al . Lung cancer screening using low-dose spiral CT: results of baseline and 1-year follow-up studies. Chest. 2002; 122 15-20
- 11 Henschke C I, McCauley D I, Yankelevitz D F. et al . Early Lung Cancer Action Project: overall design and findings from baseline screening. Lancet. 1999; 354 99-105
- 12 Diederich S, Lenzen H, Windmann R. et al . Pulmonary nodules: Eperimental and clinical studies at low-dose CT. Radiology. 1999; 213 289-298
- 13 Karabulut N, Törü M, Gelebeck V. et al . Comparison of low-dose and standard-dose helical CT in the evaluation of pulmonary nodules. Eur Radiol. 2002; 12 2764-2769
- 14 Gergely I, Neumann C, Reiger F. et al . Detektion pulmonaler Rundherde mit der Ultra-low-dose-CT im Rahmen der onkologischen Nachsorge. Fortschr Röntgenstr. 2005; 177 1077-1083
- 15 Das M, Mühlenbruch G, Heinen S. et al . Performance evaluation of a computer-aided detection algorithm for solid pulmonary nodules in low-dose and standard-dose MDCT chest examinations and its influence on radiologists. Br J Radiol. 2008; 81 841-847
- 16 Stamm G, Nagel H D. CT-Expo – ein neuartiges Programm zur Dosisevaluierung in der CT. Fortschr Röntgenstr. 2002; 174 1570-1576
- 17 Naidich D P. Volumetric scans change perceptions in thoracic CT. Diagn Imaging. 1993; 15 70-74
- 18 Seltzer S E, Judy P F, Adams D F. et al . Spiral CT of the chest: comparison of cine and film-based viewing. Radiology. 1995; 197 73-78
- 19 Napel S, Rubin G D, Jeffrey R B. STS-MIP: a new reconstruction technique for CT of the chest. J Comput Assist Tomogr. 1993; 17 832-838
- 20 Diederich Jr S, Lentschig M G, Winter F. et al . Detection of pulmonary nodules with overlapping vs. non-overlapping image reconstruction at spiral CT. Eur Radiol. 1999; 9 281-286
- 21 Rubin G D, Lyo J K, Paik D S. et al . Pulmonary nodules on multi-detector row CT scans: performance comparison of radiologists and computer-aided detection. Radiology. 2005; 234 274-283
- 22 Ravenel J G, McAdams H P, Remy-Jardin M. et al . Multidimensional imaging of the thorax: practical applications. J Thorac Imaging. 2001; 16 269-281
- 23 Remy-Jardin M, Remy J, Giraud F. et al . Pulmonary nodules: detection with thick-section spiral CT versus conventional CT. Radiology. 1993; 187 513-520
- 24 Schaefer-Prokop C, Prokop M. New imaging techniques in the treatment guidelines for lung cancer. Eur Respir J Suppl. 2002; 35 71 s-83 s
- 25 Wormanns D, Ludwig K, Beyer F. et al . Detection of pulmonary nodules at multirow-detector CT: effectiveness of double reading to improve sensitivity at standard-dose and low-dose chest CT. Eur Radiol. 2005; 15 14-22
- 26 Mayo J R, Kim K I, MacDonald S L. et al . Reduced radiation dose helical chest CT: effect on reader evaluation of structures and lung findings. Radiology. 2004; 232 749-756
- 27 Saba L, Caddeo G, Mallarini G. Computer-Aided Detection of Pulmonary Nodules in Computed Tomography: Analysis and Review of the Literature. J Comput Assist Tomogr. 2007; 31 611-619
- 28 Wormanns D, Fiebich M, Saidi M. et al . Automatic detection of pulmonary nodules at spiral CT: clinical application of a computer-aided diagnosis system. Eur Radiol. 2002; 12 1052-1057
- 29 Armato S G, Giger M L, MacMahon H. et al . Lung cancer: performance of automated lung nodule detection applied to cancers missed in a CT screening program. Radiology. 2002; 225 685-692
- 30 Fraioli F, Catalano C, Almberger M. et al . Evaluation of effectiveness of a computer system (CAD) in the identification of lung nodules with low dose MSCT: scanning techniques and preliminary results. Radiol Med. 2004; 109 40-49
- 31 Marten K, Seyfarth T, Auer F. et al . Computer-assisted detection of pulmonary nodules: performance evaluation of an expert knowledge based detection system in consensus reading with experienced and inexperienced chest radiologists. Eur Radiol. 2004; 14 1930-1938
- 32 Marten K, Grillhosl A, Seyfarth T. et al . Computer assisted detection of pulmonary nodules: evaluation of diagnostic performance using an expert-knowledge-based detection system with variable reconstruction slice thickness settings. Eur Radiol. 2005; 15 203-212
- 33 Goo J M, Lee J W, Lee H J. et al . Automated lung nodule detection at low dose CT: preliminary experience. Korean J Radiol. 2003; 4 211-216
- 34 Das M, Mühlenbruch G, Mahnken A. et al . Small pulmonary nodules: effect of two computer-aided-detection systems on radiologist performance. Radiology. 2006; 241 564-571
- 35 Yuan R, Vos P M, Cooperberg P L. Computer-aided detection in screening CT for pulmonary nodules. Am J Roentgenol. 2006; 186 1280-1287
- 36 Bae K T, Kim J S, Na Y H. et al . Pulmonary nodules: automated detection on CT images with morphologic matching algoritm preliminary result. Radiology. 2005; 236 286-294
- 37 Ko J P, Betke M. Chest CT: Automated Nodule detection and assessment of change over time-preliminary experience. Radiology. 2001; 218 267-273
- 38 Thurfjell E L, Lernevall K A, Taube A A. Benefit of independent double reading in a population-based mammography screening program. Radiology. 1994; 191 241-244
- 39 Beam C A, Sullivan D C, Layde P M. Effect of human variability on independent double reading in screening mammography. Acad Radiol. 1996; 3 891-897
- 40 Quekel L G, Goei R, Kessels A G. et al . Detection of lung cancer on the chest radiograph: impact of previous films, clinical information, double reading, and dual reading. J Clin Epidemiol. 2001; 54 1146-1150
Dr. Patrick Alexander Hein
Institut für Radiologie, Charité Campus Mitte, Charité-Universitätsmedizin Berlin
Charitéplatz 1
10117 Berlin
Telefon: + + 49/30/62 73 45
Fax: + + 49/30/52 79 10
eMail: patrick.hein@charite.de