RSS-Feed abonnieren
DOI: 10.1055/s-0028-1109472
© Georg Thieme Verlag KG Stuttgart · New York
Stammzelltherapie bei Korneadefekten
Stem Cell Therapy for Corneal DefectsPublikationsverlauf
Eingegangen: 1.2.2009
Angenommen: 28.4.2009
Publikationsdatum:
30. Juli 2009 (online)

Zusammenfassung
Hintergrund: Der Heilungsprozess kornealer Defekte setzt funktionsfähige Limbusstammzellen voraus. Deren Verlust führt zur sekundären Wundheilungsstörung. Die Stammzellforschung eröffnet neue Therapiemöglichkeiten. Material und Methoden: Selektive Medline Recherche in der amerikanischen National Library of Medicine. Ergebnisse: Die autologe Limbusstammzelltransplantation ist derzeit die Therapie der Wahl. Eine andere klinisch erprobte Möglichkeit ist die Transplantation einer Amnionmembran, die zuvor mit Limbusstammzellen besiedelt wurde. Tierexperimentell sind auch knochenmarkisolierte mesenchymale oder epidermale Stammzellen zur Besiedlung verwendet worden. Fettisolierte mesenchymale Stammzellen können ebenfalls die Regenerationsfähigkeit der Kornea unterstützen. Überdies ist die Membrantransplantation, die aus Epithelzellen der Mundschleimhaut in vitro gezüchtet wurde, klinisch erprobt. Diskussion und Schlussfolgerungen: Beidseitige Limbusstammzellinsuffizienz ist der limitierende Faktor einer autologen Limbusstammzelltransplantation. Allogen transplantierte Limbusstammzellen müssen vor Destruktion durch Immunsuppression geschützt werden. Epithelzellen, epidermale Stammzellen, knochenmark- oder fettisolierte mesenchymale Stammzellen fördern die Regeneration der Kornea und scheinen für die Therapie der Korneadefekte geeignet zu sein. Die mesenchymalen Stammzellen bieten zum anderen den Vorteil einer entzündungshemmenden Wirkung, inhibieren in vitro die Proliferation allogener T-Zellen und führen nach allogener und xenogener Transplantation zu keiner Abstoßungsreaktion.
Abstract
Background: The healing process of corneal defects requires functioning limbus stem cells. Their loss will lead to secondary wound healing problems. Stem cell research offers new treatment options. Material and Methods: A Medline search of the U. S. National Library of Medicine was carried out. Results: The autologous limbus stem cell transplantation is currently the treatment of choice. Amniotic membrane transplantation, previously settled with limbus stem cells, is a clinically proven method. In animal experiments bone marrow-derived mesenchymal stem cells or epidermal stem cells can be used to improve healing of corneal defects. Adipose-derived stem cells may support the regenerative ability of the cornea as well. Moreover, membrane transplantation of epithelial cells from the buccal mucosa cultivated in vitro was clinically tested. Discussion and Conclusions: Limbus stem cell failure of both eye is the limiting factor for autologous limbus stem cell transplantation. Epithelial cells, epidermal stem cells, bone marrow- or adipose-derived mesenchymal stem cells promote the regeneration of the cornea and have become established for the treatment of corneal defects. Additionally, mesenchymal stem cells offer the advantage of immunosuppressive and anti-inflammatory effects.
Schlüsselwörter
Kornea - Trauma - Stammzelle
Key words
cornea - trauma - stem cells
Literatur
- 1
Lavker R M, Tseng S C, Sun T T.
Corneal epithelial stem cells at the limbus: looking at some old problems from a new
angle.
Exp Eye Res.
2004;
78
433-446
MissingFormLabel
- 2
Meller D, Kruse F.
Ex-vivo-Expansion kornealer Stammzellen Experimentelle Grundlagen und erste klinische
Ergebnisse.
Der Ophthalmologe.
2001;
98 (9)
811-817
MissingFormLabel
- 3
Evans M J.
The isolation and properties of a clonal tissue culture strain of pluripotent mouse
teratoma cells.
J Embryol Exp Morphol.
1972;
28
163-167
MissingFormLabel
- 4
Thomson J A, Itskovitz-Eldor J, Shapiro S S. et al .
Embryonic Stem Cell Lines Derived from Human Blastocysts.
Science.
1998;
282
1145-1147
MissingFormLabel
- 5
Shamblott M J, Axelman J, Wang S. et al .
Derivation of pluripotent stem cells from cultured human primordial germ cells.
Proc Natl Acad Sci USA.
1998;
95 (23)
13726-13731
MissingFormLabel
- 6
Gearhart J D.
New potential for human embryonic stem cells.
Science.
1998;
282
1145-1147
MissingFormLabel
- 7
Stewart C L, Gadi I, Bhatt H.
Stem cells from primordial germ cells can reenter the germ line.
Dev Biol.
1994;
161
626-628
MissingFormLabel
- 8
Surani M A.
Reprogramming a somatic nucleus by trans-modification activity in germ cells.
Semin Cell Dev Biol.
1999;
10
273-277
MissingFormLabel
- 9
French A J, Adams C A, French A J. et al .
Development of human cloned blastocysts following somatic cell nuclear transfer with
adult fibroblasts.
Stem Cells.
2008;
26 (2)
485-493
MissingFormLabel
- 10
Friedenstein A J, Gorskaja J F, Kulagina N N.
Fibroblast precusors in normal and irradiated mouse hematopoetic organs.
Exp Hematol.
1976;
4
267-274
MissingFormLabel
- 11
Janes S M, Lowell S, Hutter C.
Epidermal stem cells.
J Pathol.
2002;
197
479-491
MissingFormLabel
- 12
Lees S J, Zwetsloot K A, Booth F W.
Circulating Skeletal Stem Cells.
J Cell Biol.
2001;
153
1133-1140
MissingFormLabel
- 13
Péchoux C, Gudjonsson T, Ronnov-Jessen L. et al .
Human mammary luminal epithelial cells contain progenitors to myoepithelial cells.
Dev Biol.
1999;
206
88-89
MissingFormLabel
- 14
Reynolds B A, Weiss S.
Generation of neurons and astrocytes from isolated cells of the adult mammalian central
nervous system.
Science.
1992;
255
1707-1710
MissingFormLabel
- 15
Maunoury R, Robine S, Pringault E. et al .
Developmental regulation of villin gene expression in the epithelial cell lineages
of mouse digestive and urogenital tracts.
Development.
1992;
115
717-728
MissingFormLabel
- 16
Gimble J M.
Adipose tissue-derived therapeutics.
Expert Opin Biol Ther.
2003;
3
705-713
MissingFormLabel
- 17
Romanov Y A, Svintsitskaya V A, Smirnov V N.
Searching for alternative sources of postnatal human mesenchymal stem cells: candidate
MSC-like cells from umbilical cord.
Stem cells.
2003;
21
105-110
MissingFormLabel
- 18
Shi S, Gronthos S.
Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental
pulp.
J Bone Miner Res.
2003;
18
696-704
MissingFormLabel
- 19
Young R W.
Cell proliferation during postnatal development of the retina in the mouse.
Brain Res.
1985;
353 (2)
229-239
MissingFormLabel
- 20
Spangrude G J, Heimfeld S, Weissman I L.
Purification and characterization of mouse hematopoietic stem cells.
Science.
1988;
241
58-62
MissingFormLabel
- 21
Buckner C D, Epstein R B, Rudolph R H. et al .
Allogeneic marrow engraftment following whole body irradiation in a patient with leukemia.
Blood.
1970;
35
741-750
MissingFormLabel
- 22
Friedenstein A J, Deriglasova U F, Kulagina N N. et al .
Precursors for fibroblasts in different populations of hematopoietic cells of hhematopoetic
cells as detected by in vitro colony assay method.
Exp Hematol.
1974;
2
83-92
MissingFormLabel
- 23
Sanchez-Ramos J, Song S, Cardozo-Pelaez F. et al .
Adult bone marrow stromal cells differentiate into neural cells in vitro.
Exp Neurol.
2000;
164 (2)
247-256
MissingFormLabel
- 24
Zuk P A, Zhu M, Mizuno H. et al .
Multilineage cells from human adipose tissue: Implications for cell-based therapies.
Tissue Eng.
2001;
7
211-228
MissingFormLabel
- 25
Muraglia A, Cancedda R, Quarto R.
Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according
to a hierarchical model.
J cell Sci.
2000;
113
1161-1166
MissingFormLabel
- 26
Pountos I, Giannoudis P V.
Biology of mesenchymal stem cells.
Int J Care Injured.
2005;
365
S8-S12
MissingFormLabel
- 27
Tsuchida H, Hashimoto J, Crawford E. et al .
Engineered human mesenchymal stem cells repair femoral defect in rats.
J Orthop Res.
2003;
21
44-53
MissingFormLabel
- 28
Saito T, Kuang J Q, Lin C C. et al .
Transcoronary implantation of bone marrow stromal cells ameliorates cardiac function
after myocardial infarction.
J Thorac Cardiovasc Surg.
2003;
126
114-123
MissingFormLabel
- 29
Guo T, Wang W, Zhang J. et al .
Experimental study on repairing damage of corneal surface by mesenchymal stem cells
transplantation.
Zhonghua Yan Ke Za Zhi.
2006;
42 (3)
246-250
MissingFormLabel
- 30
Ma Y, Xu Y, Xiao Z. et al .
Reconstruction of chemically burned rat corneal surface by bone marrow-derived human
mesenchymal stem cells.
Stem Cells.
2006;
24
315-321
MissingFormLabel
- 31
Ye J, Lee S Y, Kook K H. et al .
Bone marrow-derived progenitor cells promote corneal wound healing following alkali
injury.
Graefes Arch Clin Exp Ophthalmol.
2008;
246 (2)
217-222
MissingFormLabel
- 32
Choong P F, Mok P L, Cheong S K. et al .
Mesenchymal stromal cell-like characteristics of corneal keratocytes.
Cytotherapy.
2007;
9 (3)
252-258
MissingFormLabel
- 33
Naresh P, Anees F, Soundarya L M. et al .
Mesenchymal cells from limbal stroma of human eye.
Mol Vis.
2008;
14
431-442
MissingFormLabel
- 34
Arnalich-Montiela F, Pastorb S, Blazquez-Martineza A. et al .
Adipose-derived stem cells are a source for cell therapy of the corneal stroma.
Stem Cells.
2008;
26
570-579
MissingFormLabel
- 35
Tsai R J, Li L M, Chen J K.
Reconstruction of damaged corneas by transplantation of autologous limbal epithelial
cells.
N Engl J Med.
2000;
343 (2)
86-93
MissingFormLabel
- 36
Koizumi N, Inatomi T, Suzuki T. et al .
Cultivated corneal epithelial stem cell transplantation in ocular surface disorders.
Ophthalmology.
2001;
108 (9)
1569-1574
MissingFormLabel
- 37
Kim J T, Chun Y S, Song K Y. et al .
The effect of in vivo grown corneal epithelium transplantation on persistent epithelial
defects with limbal stem cell deficiency.
J Korean Med Sci.
2008;
23
502-508
MissingFormLabel
- 38
Stoiber J, Ruckhofer J, Muss W. et al .
Amnion-Limbus-Transplantation zur Oberflächenrekonstruktion nach schwererVerätzung
und Verbrennung.
Der Ophthalmologe.
2002;
99 (11)
839-848
MissingFormLabel
- 39
Yang X, Moldovan N I, Zhao Q. et al .
Reconstruction of damaged cornea by autologous transplantation of epidermal adult
stem cells.
Mol Vis.
2008;
14
1064-1074
MissingFormLabel
- 40
Nishida K, Yamato M, Hayashida Y. et al .
Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral
mucosal epithelium.
N Engl J Med.
2004;
351
1187-1196
MissingFormLabel
- 41
Kruse F, Rohrschneider K, Völcker H E.
Amniotic membrane transplantation for ocular surface reconstruction.
Der Ophthalmologe.
1998;
95 (2)
114-119
MissingFormLabel
- 42
Kruse F, Meller D.
Die Amnionmembrantransplantation zur Rekonstruktion der Augenoberfläche.
Der Ophthalmologe.
2001;
98 (9)
801-810
MissingFormLabel
- 43
Reinhard T, Sundmacher R.
Therapeutische Strategien bei rezidivierender Erosio nach mechanischem Trauma, bei
epithelialer Basalmembrandystrophie und idiopathischer Genese.
Der Ophthalmologe.
2000;
97 (2)
157-172
MissingFormLabel
- 44
Meller D, Tseng S CG.
Transplantation of amniotic membrane for conjunctival and corneal surface reconstruction.
Der Ophthalmologe.
1998;
95 (12)
805-813
MissingFormLabel
- 45
Aggarwal S, Pittenger M F.
Human mesenchymal stem cells modulate allogeneic immune cell responses.
Blood.
2005;
105
1815-1822
MissingFormLabel
- 46
Barry F P, Murphy J M, English K. et al .
Immunogenicity of adult mesenchymal stem cells: lessons from the fetal allograft.
Stem Cells Dev.
2005;
14
252-265
MissingFormLabel
- 47
Le Blanc K, Rasmusson I, Sundberg B. et al .
Treatment of severe acute graft-versus-host disease with third party haploidentical
mesenchymal stem cells.
Lancet.
2004;
363
1439-1441
MissingFormLabel
Prof. Dr. Burkhard Wiechens
Klinik für Augenheilkunde, Klinikum Region Hannover, Klinikum Nordstadt
Haltenhoffstr. 41
30167 Hannover
Telefon: ++ 49/5 11/9 70 12 13
Fax: ++ 49/5 11/9 70 16 43
eMail: burkhard.wiechens@krh.eu