Fortschr Neurol Psychiatr 2009; 77(8): 432-443
DOI: 10.1055/s-0028-1109494
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Biologische Korrelate präfrontal aktivierender und temporoparietal inhibierender Behandlung mit repetitiver transkranieller Magnetstimulation (rTMS)

Biological Correlates of Prefrontal Activating and Temporoparietal Inhibiting Treatment with Repetitive Transcranial Magnetic Stimulation (rTMS)A. Mobascher1, 2 , M. Arends1 , G. W. Eschweiler3 , J. Brinkmeyer1, 2 , M. W. Agelink4 , J. Kornischka4 , G. Winterer1, 2 , J. Cordes1
  • 1Klinik und Poliklinik für Psychiatrie und Psychotherapie, Heinrich-Heine-Universität Düsseldorf
  • 2Institut für Medizin, Forschungszentrum Jülich
  • 3Universitätsklinik für Psychiatrie und Psychotherapie, Tübingen
  • 4Klinik für Psychiatrie, Psychotherapie and Psychosomatik, Herford
Further Information

Publication History

Publication Date:
16 June 2009 (online)

Zusammenfassung

Die repetitive transkranielle Magnetstimulation (rTMS) ermöglicht es, auf nicht invasive Weise die kortikale Aktivität zu verändern. Durch hochfrequente rTMS sind überwiegend aktivierende und durch niederfrequente rTMS inhibierende Effekte möglich. Neben ihrer Anwendung als Forschungsinstrument und diagnostisches Werkzeug in der Neurologie ergeben sich potenzielle therapeutische Anwendungsgebiete in der Psychiatrie, und zwar insbesondere in der Behandlung von Krankheiten bzw. Symptomen, die mit regionalen kortikalen Aktivitätsveränderungen einhergehen. Derzeit wird die rTMS u. a. in der Behandlung der Depression und der schizophrenen Negativ-Symptomatik evaluiert. Bei beiden Syndromen könnte eine Hypofrontalität bzw. eine frontolimbische Dysbalance durch eine aktivierende rTMS „korrigiert” bzw. therapiert werden. Umgekehrt besteht beim Tinnitus und bei akustischen Halluzinationen eine Hyperaktivität temporoparietaler Areale. Hier wird der therapeutische Nutzen einer niederfrequenten inhibierenden rTMS untersucht. Neben der direkten Modulation der stimulierten kortikalen Region sind weitere biologische Effekte der rTMS beschrieben, die für die therapeutische Wirkung bedeutsam sein könnten. Hierzu zählen Veränderung der Aktivität in krankheitsrelevanten kortiko-kortikalen Schaltkreisen, Modulation der Ausschüttung biogener Amine aus subkortikalen Kerngebieten und schließlich neuroendokrine Effekte. In dieser Übersicht wird der aktuelle Kenntnisstand über die therapeutisch relevanten biologischen Effekte der rTMS dargestellt. Ein besseres Verständnis der neurophysiologischen Grundlagen der rTMS und der zu behandelnden psychiatrischen Störungen sollte zu optimierten Stimulationsprotokollen und besser definierten Behandlungsindikationen führen.

Abstract

Repetitive transcranial magnetic stimulation (rTMS) is a tool that enables clinicians and neuroscientists to modulate cortical activity in a non-invasive way. High-frequency rTMS has predominantly an activating effect on the stimulated brain region while low-frequency rTMS has an inhibitory effect. In addition to its usefulness as a research tool and in neurological diagnostics, rTMS may prove useful as a therapeutic option in psychiatry, especially in disorders that are associated with regional changes in cortical activity. For instance, rTMS is under current investigation in the treatment of depression and negative symptoms of schizophrenia. A hypofrontality or a fronto-limbic imbalance associated with both syndromes could be corrected by activating, high frequency rTMS. Conversely, a regional hyperactivity in the temporo-parietal cortex has been described in subjects suffering from auditory hallucinations and tinnitus. Low frequency, inhibitory rTMS is currently evaluated as a therapeutic option in these subjects. In addition to the effects on the directly stimulated brain area, other biological effects of rTMS may exert a beneficial influence on brain function. Amongst these are a modulation of cortico-cortical circuits (e. g. fronto-cingular and fronto-parietotemporal circuits), effects on monoaminergic neuromodulation and neuroendocrine effects. The current knowledge about the therapeutically relevant neurophysiological and neuroendocrine effects of rTMS are reviewed. An improved understanding of the neurophysiological basis of the therapeutic effects of rTMS and of the pathophysiology underlying neuropsychiatric diseases may lead to optimized therapeutic rTMS applications and new clinical indications for rTMS.

Literatur

  • 1 Gershon A A, Dannon P N, Grunhaus L. Transcranial magnetic stimulation in the treatment of depression.  Am J Psychiatry. 2003;  160 835-845
  • 2 Martin J LR, Barbanoj M J, Schlaepfer T E. et al . Repetitive transcranial magnetic stimulation for the treatment of depression.  Br J Psychiatry. 2003;  182 480-491
  • 3 Mitchell P B, Loo C K. Transcranial magnetic stimulation for depression.  Aust N Z J Psychiatry. 2006;  40 406-413
  • 4 Fregni F, Marcolin M A, Myczkowski M. et al . Predictors of antidepressant response in clinical trials of transcranial magnetic stimulation.  Int J Neuropsychopharmacol. 2006;  9 641-654
  • 5 Herwig U, Fallgatter A J, Höppner J. et al . Antidepressant effects of augmentative transcranial magnetic stimulation: randomised multicentre trial.  Br J Psych. 2007;  191 441-448
  • 6 Cordes J, Arends M, Mobascher A. et al . Potential clinical targets of repetitive transcranial magnetic stimulation (rTMS) treatment in schizophrenia.  Neuropsychobiology. 2006;  54 87-99
  • 7 Saba G, Schurhoff F, Leboyer M. Therapeutic and neurophysiologic aspects of transcranial magnetic stimulation in schizophrenia.  Neurophysiol Clin. 2006;  36 185-194
  • 8 Londero A, Langguth B, De Ridder D. et al . Repetitive transcranial magnetic stimulation (rTMS): a new therapeutic approach in subjective tinnitus?.  Neurophysiol Clin. 2006;  36 145-155
  • 9 Kleinjung T, Steffens T, Langguth B. et al . Treatment of chronic tinnitus with neuronavigated repetitive transcranial magnetic stimulation (rTMS).  HNO. 2006;  54 439-444
  • 10 Bench C J, Friston K J, Brown R G. et al . Regional cerebral blood flow in depression measured by positron emission tomography: the relationship with clinical dimensions.  Psychol Med. 1993;  23 579-590
  • 11 Dierks T, Linden D E, Jandl M. et al . Activation of Heschl’s gyrus during auditory hallucinations.  Neuron. 1999;  22 616-621
  • 12 Shergill S S, Brammer M J, Williams S C. et al . Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging.  Arch Gen Psychiatry. 2000;  57 1033-1038
  • 13 Linden D E. Akustische Halluzinationen und funktionelle Bildgebung.  Fortschr Neurol Psych. 2008;  76 (Suppl 1) S33-S39
  • 14 Kähkönen S, Komssi S, Wilenius J. et al . Prefrontal TMS produces smaller EEG responses than motor-cortex TMS: implications for rTMS treatment in depression.  Psychopharmacology. 2005;  18 16-20
  • 15 Komssi S, Kähkönen S. The novelty of the combined use of electroencephalography and transcranial magnetic stimulation for neuroscience research.  Brain Res Rev. 2006;  52 183-192
  • 16 Van Der Werf Y D, Paus T. The neural response to transcranial magnetic stimulation of the human motor cortex. Intracortical and cortico-cortical contributions.  Exp Brain Res. 2006;  175 231-245
  • 17 Pascual-Leone A, Valls-Sole J, Wassermann E M. et al . Responses to rapid- rate transcranial magnetic stimulation of the human motor cortex.  Brain. 1994;  117 847-858
  • 18 Speer A M, Kimbrell T A, Wassermann E M. et al . Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients.  Biol Psychiatry. 2000;  48 1133-1141
  • 19 Lang N, Harms J, Weyh T. et al . Stimulus intensity and coil characteristics influence the efficacy of rTMS to suppress cortical excitability.  Clin Neurophysiol. 2006;  117 2292-2301
  • 20 Padberg F, Zwanzger P, Keck M E. et al . Repetitive transcranial magnetic stimulation (rTMS) in major depression: relation between efficacy and stimulation intensity.  Neuropsychopharmacology. 2002;  27 638-645
  • 21 Hoffman R E, Cavus I. Slow transcranial magnetic stimulation, long-term depotentiation, and brain hyperexcitability disorders.  Am J Psychiatry. 2004;  159 1093-1102
  • 22 Simons W, Dierick M. Transcranial magnetic stimulation as a therapeutic tool in psychiatry.  World J Biol Psychiatry. 2005;  6 6-25
  • 23 Esser S K, Huber R, Massimi M. et al . A direct demonstration of cortical LTP in humans: A combined TMS/EEG study.  Brain Res Bull. 2006;  69 86-94
  • 24 Kocmur M, Milcinski M, Budihna N V. Evaluation of brain perfusion with technetium-99m bicisate single-photon emission tomography in patients with depressive disorder before and after drug treatment.  Eur J Nucl Med. 1998;  25 1412-1414
  • 25 Teneback C C, Nahas Z, Speer A M. et al . Changes in prefrontal cortex and paralimbic activity in depression following two weeks of daily left prefrontal TMS.  J Neuropsychiatry Clin Neurosci. 1999;  11 426-435
  • 26 Catafau A M, Perez V, Gironell A. et al . SPECT mapping of cerebral activity changes induced by repetitive transcranial magnetic stimulation in depressed patients. A pilot study.  Psychiatry Res. 2001;  106 151-160
  • 27 Mottaghy F M, Keller C E, Gangitano M. et al . Correlation of cerebral blood flow and treatment effects of repetitive transcranial magnetic stimulation in depressed patients.  Psychiatry Research Neuroimaging. 2002;  115 1-14
  • 28 Kimbrell T A, Little J T, Dunn R T. et al . Frequency dependence of antidepressant response to left prefrontal repetitive transcranial magnetic stimulation (rTMS) as a function of baseline cerebral glucose metabolism.  Biol Psychiatry. 1999;  46 1603-1613
  • 29 Eschweiler G W, Wegerer C, Schlotter W. et al . Left prefrontal activation predicts therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) in major depression.  Psychiatry Research: Neuroimaging Section. 2000;  99 161-172
  • 30 Luborzewski A, Schubert F, Seifert F. et al . Metabolic alterations in the dorsolateral prefrontal cortex after treatment with high-frequency repetitive transcranial magnetic stimulation in patients with unipolar major depression.  J Psych Res. 2007;  41 606-615
  • 31 Couturier J L. Efficacy of rapid-rate repetitive transcranial magnetic stimulation in the treatment of depression. A systematic review and meta-analysis.  J Psychiatry Neurosci. 2005;  30 83-90
  • 32 Paus T, Castro-Alamacos M A, Petrides M. Cortico-cortical connectivity of the human mid-dorsolateral frontal cortex and its modulation by repetitive transcranial magnetic stimulation.  Eur J Neurosci. 2001;  14 1405-1411
  • 33 Barrett J, Della-Maggiore V, Chouinard P A. et al . Mechanisms of action underlying the effect of repetitive transcranial magnetic stimulation on mood. Behavioral and brain imaging studies.  Neuropsychopharmacology. 2004;  29 1172-1189
  • 34 Rush A J, Giles D E, Schlesser M E. et al . The dexamethasone suppression test in patients with mood disorders.  J Clin Psychiatry. 1996;  57 470-484
  • 35 Holsboer F, Barden N. Antidepressants and hypothalamic-pituitary-adrenocortical regulation.  Endocr Rev. 1996;  17 197-205
  • 36 Ising M, Kunzel H E, Binder E B. et al . The combinded dexamethasone/CRH test as a potential surrogate marker in depression.  Prog Neuropsychopharmacol Biol Psychiatry. 2005;  29 1085-1093
  • 37 Jackson I M. The thyroid axis and depression.  Thyroid. 1998;  8 951-956
  • 38 Purba J S, Hoogendijk W JG, Hofman M A. et al . Increased number of vasopressin- and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression.  Arch Gen Psychiat. 1996;  53 137-143
  • 39 Keck M E, Wigger A, Welt T. et al . Vasopressin mediates, the response of the combined dexamethason/CRH test in hyper-anxious rats: implications for the pathogenesis of affective disorders.  Neuropsychopharmacol. 2002;  26 94-105
  • 40 Keck M E, Engelmann M, Muller M B. et al . Repetitive transcranial magnetic stimulation induces active coping strategies and attenuates the neuroendocrine stress response in rats.  J Psychiatr Res. 2000;  34 265-276
  • 41 Keck M E, Welt T, Post A. et al . Neuroendocrine and behavioral effects of repetitive transcranial magnetic stimulation in a psychopathological animal model are suggestive of antidepressant-like effects.  Neuropsychopharmacol. 2001;  24 337-349
  • 42 Keck M E. Neurobiologische Grundlagen des therapeutischen Einsatzes der repetitiven transkraniellen Magnetstimulation (rTMS) in der Psychiatrie.  Nervenheilkunde. 2003;  22 253-260
  • 43 Pridmore S. Rapid transcranial magnetic stimulation and normalization of the dexamethasone suppression test.  Psychiatry Clin Neurosci. 1999;  53 33-37
  • 44 Baeken C, De Raedt R, Leyman L. et al . The impact of one HF-rTMS session on mood and salivary cortisol in treatment resistant uni-polar melancholic depressed patients.  J Affect Disorders. 2009;  113 100-108
  • 45 Zwanzger P, Baghai T C, Padberg F. et al . The combined dexamethason-CRH test before and after repetitive transcranial magnetic stimulation (rTMS) in major depression.  Psychoneuroendocrinology. 2003;  28 376-385
  • 46 Szuba M P, O’Reardon J P, Rai A S. et al . Acute mood and thyroid stimulating hormone effects of transcranial magnetic stimulation in major depression.  Biol Psychiatry. 2001;  50 22-27
  • 47 Cohrs S, Tergau F, Korn J. et al . Suprathreshold repetitive transcranial magnetic stimulation elevates thyroid-stimulating hormone in healthy male subjects.  J Nerv Ment Dis. 2001;  189 393-397
  • 48 George M S, Wassermann E M, Williams W A. et al . Changes in mood and hormone levels after rapid-rate transcranial magnetic stimulation (rTMS) of the prefrontal cortex.  J Neuropsychiatry Clin Neurosci. 1996;  8 172-180
  • 49 Evers S, Hengst K, Pecuch P W. The impact of repetitive transcranial magnetic stimulation on pituitary hormone levels and cortisol in healthy subjects.  J of Affective Disorders. 2001;  66 83-88
  • 50 Yukimasa T, Yoshimura R, Tamagawa A. et al . High-frequency repetitive transcranial magnetic stimulation improves refractory depression by influencing catecholamine and brain-derived neurotrophic factors.  Pharmacopsychiatry. 2006;  39 52-59
  • 51 Zanardini R, Gazzoli A, Ventriglia M. et al . Effect of repetitive transcranial magnetic stimulation on serum brain derived neurotrophic factor in drug resistant depressed patients.  J Affect Disord. 2006;  91 83-86
  • 52 Lang U E, Bajbouj M, Gallinat J. et al . Brain-derived neurotrophic factor serum concentrations in depressive patients during vagus nerve stimulation and repetitive transcranial magnetic stimulation.  Psychopharmacology. 2006;  187 56-59
  • 53 Wolkin A, Sanfilipo M, Wolf A P. et al . Negative Symptoms and Hypofrontality in chronic schizophrenia.  Arch Gen Psychiatry. 1992;  49 959-965
  • 54 Andreasen N C, O’Leary D S, Flaum M. et al . Hypofrontality in schizophrenia: disturbed dysfunctional circuits in neuroleptic-naive patients.  Lancet. 1997;  349 1730-1734
  • 55 Callicott J H, Mattay V S, Verchinski B A. et al . Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down.  Am J Psychiatry. 2003;  160 2209-2215
  • 56 Holi M M, Eronen M, Toivonen K. et al . Left prefrontal repetitive transcranial magnetic stimulation in schizophrenia.  Schizophr Bull. 2004;  30 429-434
  • 57 Hajak G, Marienberg J, Langguth B. et al . High-frequency repetitive transcranial magnetic stimulation in schizophrenia: a combined treatment and neuroimaging study.  Psychol Med. 2004;  34 1157-1163
  • 58 Standford A D, Sharif Z, Corcoran C. et al . rTMS strategies for the study and treatment of schizophrenia: a review.  Int J Neuropsychopharmacol. 2008;  11 563-576
  • 59 Jandl M, Bittner R, Sack A. et al . Changes in negative symptoms and EEG in schizophrenic patients after repetitive transcranial magnetic stimulation (rTMS): an open-label pilot study.  J Neural Transm. 2005;  112 955-967
  • 60 Jin Y, Potkin S G, Kemp A S. et al . Therapeutic effects of individualized alpha frequency transcranial magnetic stimulation (alphaTMS) on the negative symptoms of schizophrenia.  Schizophr Bull. 2006;  32 556-561
  • 61 Lanzenberger R, Kasper S. Neuroimaging in schizophrenia.  Fortschr Neurol Psychiat. 2005;  73 51-59
  • 62 Konrad A, Winterer G. Disturbed structural connectivity in schizophrenia – primary factor in pathology or epiphenomenon?.  Schizophr Bull. 2008;  34 72-92
  • 63 Friston K J, Frith C D. Schizophrenia: a disconnection syndrome?.  Clin Neurosci. 1995;  3 (2) 89-97
  • 64 Meyer-Lindenberg A, Poline J B, Kohn P D. et al . Evidence for abnormal cortical functional connectivity during working memory in schizophrenia.  Am J Psychiatry. 2001;  158 1809-1817
  • 65 Winterer G, Weinberger D R. Genes, dopamine and cortical signal-to-noise ratio in schizophrenia.  Trends Neurosci. 2004;  27 683-690
  • 66 Winterer G. Cortical microcircuits in schizophrenia – the dopamine hypothesis revisited.  Pharmacopsychiatry. 2006;  39 (Suppl 1) 68-71
  • 67 Rolls E T, Loh M, Deco G. et al . Computational models of schizophrenia and dopamine modulation in the prefrontal cortex.  Nat Rev Neurosci. 2008;  9 (9) 696-709
  • 68 Keck M E, Sillaber I, Ebner K. et al . Acute repetitive transcranial magnetic stimulation of frontal brain regions selectively modulates the release of vasopressin, biogenic amines and amino acids in the rat brain.  Eur J Neurosci. 2000;  12 3713-3720
  • 69 Sesack S R, Pickel V M. Prefrontal Cortex efferents in the rat synapseon unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and in dopamine neurons in the ventral tegmental area.  J Com Neurol. 1992;  320 145-160
  • 70 Keck M E, Welt T, Muller M B. et al . Repetitive transcranial magnetic stimulation increases the release of dopamine in the mesolimbic and mesostriatal system.  Neuropsychopharmacology. 2002;  43 101-109
  • 71 Zangen A, Hyodo K. Transcranial magnetic stimulation induces increases in extracellular levels of dopamine and glutamate in the nucleus accumbens.  Neuroreport. 2002;  13 2401-2405
  • 72 Strafella A P, Paus T, Barrett J. et al . Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus.  J Neurosci. 2001;  21 RC 157
  • 73 Strafella A P, Paus T, Fraraccio M. et al . Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex.  Brain. 2003;  126 2609-2615
  • 74 Pogarell O, Koch W, Pöpperl G. et al . Striatal dopamine release after prefrontal repetitive transcranial magnetic stimulation in major depression: preliminary results of a dynamic [123I] IBZM SPECT study.  J Psychiatr Res. 2006;  40 307-314
  • 75 Pogarell O, Koch W, Pöpperl G. et al . Acute rTMS increases striatal dopamine to a similar degree as D-amphetamine.  Psychiatry Res. 2007;  156 251-255
  • 76 Zwanzger P, Ella R, Keck M E. et al . Occurrence of delusions during repetitive transcranial magnetic stimulation (rTMS) in major depression.  Biol Psychiatry. 2002;  51 602-603
  • 77 Juckel G, Mendlin A, Jacobs B. Electrical stimulation of rat medial prefrontal cortex enhances forebrain serotonin output: implications for electroconvulsive therapy and transcranial magnetic stimulation in depression.  Neuropsychopharmacology. 1999;  21 391-398
  • 78 Kanno M, Matsumoto M, Togashi H. et al . Effects of repetitive transcranial magnetic stimulation on behavioural and neurochemical changes in rats during an elevated plus-maze-test.  J Clin Neurosci. 2003;  211 5-14
  • 79 Sibon I, Strafella A P, Gravel P. et al . Acute prefrontal cortex TMS in healthy volunteers: effects on brain 11C-alphaMtrp trapping.  NeuroImage. 2007;  34 1658-1664
  • 80 Müller M B, Toschi N, Kresse A E. et al . Longterm repetitive transcranial magnetic stimulation increases the expression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain.  Neuropsychopharmacology. 2000;  23 205-215
  • 81 Keck M E, Welt T, Erhardt A. et al . Neuroendokrine Effekte der repetitiven transkraniellen Magnetstimulation – Fokus auf Dopamin und Vasopressin.  Nervenheilkunde. 2003;  22 346-0
  • 82 Hoffman R E, Hawkins K A, Gueorguieva R. et al . Transcranial magnetic stimulation of left temporoparietal cortex and medication-resistant auditory hallucinations.  Arch Gen Psychiatry. 2003;  60 49-56
  • 83 Hoffman R E, Gueorguieva R, Hawkins K A. et al . Temporoparietal transcranial magnetic stimulation for auditory hallucinations: Safety, efficacy and moderators in a fifty patient sample.  Biol Psychiatry. 2005;  58 97-104
  • 84 Aleman A, Sommer I E, Kahn R S. Efficacy of slow repetitive transcranial magnetic stimulation in the treatment of resistent auditory hallucinations in schizophrenia: A meta-analysis.  J Clin Psychiatry. 2007;  68 416-421
  • 85 Silbersweig D A, Stern E, Frith C. et al . A functional neuroanatomy of hallucinations in schizophrenia.  Nature. 1995;  378 176-179
  • 86 Brunelin J, Poulet E, Bediou B. et al . Low frequency repetitive transcranial magnetic stimulation improves source monitoring deficit in hallucinating patients with schizophrenia.  Schizophr Res. 2006;  81 41-45
  • 87 Hoffman R E, Hampson M, Wu K. et al . Probing the pathophysiology of auditory/verbal hallucinations by combining functional magnetic resonance imaging and transcranial magnetic stimulation.  Cereb Cortex. 2007;  17 2733-2743
  • 88 McIntosh A M, Semple D, Tasker K. et al . Transcranial magnetic stimulation for auditory hallucinations in schizophrenia.  Psychiatry Res. 2004;  127 9-17
  • 89 Fitzgerald P B, Brown T L, Benitez J. et al . A double-blind sham-controlled trial of repetitive transcranial magnetic stimulation in the treatment of refractory auditory hallucinations.  J Clin Psychopharmacol. 2005;  25 358-362
  • 90 Schönfeldt-Lecuona C, Gron G, Walter H. et al . Stereotaxic rTMS for the treatment of auditory hallucinations in schizophrenia.  Neuroreport. 2004;  15 1669-1673
  • 91 Jandl M, Steyer J, Weber M. et al . Treating auditory hallucinations by transcranial magnetic stimulation: a randomized controlled cross-over trial.  Neuropsychobiology. 2006;  53 63-69
  • 92 Horacek J, Brunovsky M, Novak T. et al . Effect of low-frequency rTMS on electromagnetic tomography (LORETA) and regional brain metabolism (PET) in schizophrenia patients with auditory hallucinations.  Neuropsychobiol. 2007;  55 132-142
  • 93 Rosa M O, Gattaz W F, Rosa M A. et al . Effects of repetitive transcranial magnetic stimulation on auditory hallucinations refractory to clozapine.  J Clin Psychiatry. 2007;  68 1528-1532
  • 94 Langguth B, Eichhammer P, Kreutzer A. et al . The impact of auditory cortex activity on characterizing and treating patients with chronic tinnitus – first results from a PET study.  Acta Otolaryngol Suppl. 2006;  556 84-88
  • 95 Lockwood A H, Salvi R J, Coad M L. et al . The functional neuroanatomy of tinnitus: evidence for limbic system links and neural plasticity.  Neurology. 1998;  50 114-120
  • 96 Lockwood A H, Wack D S, Burkard R F. et al . The functional anatomy of gaze-evoked tinnitus and sustained lateral gaze.  Neurology. 2001;  56 472-480
  • 97 Giraud A L, Chery-Croze S, Fischer G. et al . A selective imaging of tinnitus.  Neuroreport. 1999;  10 1-5
  • 98 Mirz F, Pedersen B, Ishizu K. et al . Positron emission tomography of cortical centers of tinnitus.  Hear Res. 1999;  134 133-144
  • 99 Eichhammer P, Langguth B, Marienhagen J. et al . Neuronavigated repetitive transcranial magnetic stimulation in patients with tinnitus: a short case series.  Biol Psychiatry. 2003;  54 862-865
  • 100 Langguth B, Zowe M, Landgrebe M. et al . Transcranial magnetic stimulation for the treatment of tinnitus: a new coil positioning method and first results.  Brain Topography. 2006;  18 241-247
  • 101 Plewnia C, Reimold M, Najib A. et al . Dose-dependent attenuation of auditory phantom perception (tinnitus) by PET-guided repetitive transcranial magnetic stimulation.  Human Brain Mapp. 2007;  28 238-246
  • 102 Plewnia C, Reimold M, Najib A. et al . Moderate therapeutic efficacy of PET-navigated repetitive transcranial magnetic stimulation against chronic tinnitus: a randomised, controlled pilot study.  J Neurol Neurosurg Psychiatry. 2007;  78 152-156
  • 103 Richter G T, Mennemeier M, Bartel T. et al . Transcranial magnetic stimulation for tinnitus: a case study.  Laryngoscope. 2006;  116 1867-1872
  • 104 May A, Hajak G, Gänsbauer S. et al . Structural brain alterations following 5 days of intervention: Dynamic aspects of neuroplasticity.  Cerebral Cortex. 2007;  17 205-210
  • 105 Huang Y Z, Edwards M J, Rounis E. et al . Theta burst stimulation of the human motor cortex.  Neuron. 2005;  45 201-206
  • 106 Paulus W. Towards establishing a therapeutic window for rTMS by theta burst stimulation.  Neuron. 2005;  45 181-183
  • 107 Talelli P, Greenwood R J, Rothwell J C. Exploring Theta Burst Stimulation as an intervention to improve motor recovery in chronic stroke.  Clin Neurophysiol. 2007;  118 333-342
  • 108 Schutter D J, Honk van J. A framework for targeting alternative brain regions with repetitive transcranial magnetic stimulation in the treatment of depression.  J Psychiatry Neurosci. 2005;  30 (2) 91-7
  • 109 Fitzgerald P B, Benitez J, Castella de A. et al . A randomized, controlled trial of sequential bilateral repetitive transcranial magnetic stimulation for treatment-resistant depression.  Am J Psychiatry. 2006;  163 (1) 88-94
  • 110 Schule C, Zwanzger P, Baghai T. et al . Effects of antidepressant pharmacotherapy after repetitive transcranial magnetic stimulation in major depression: an open label follow-up study.  J Psychiatr Research. 2003;  37 145-153
  • 111 Mobascher A, Boecker J, Malevani J. et al . Repetitive transcranial magnetic stimulation as an antidepressant monotherapy in a patient with major depression, leucocytopenia and rhabdomyolysis.  Int J Neuropsychopharmacol. 2004;  7 527-529
  • 112 O’Reardon J P, Blumner K H, Peshek A D. et al . Long-term maintenance therapy for major depressive disorder with rTMS.  J Clin Psychiatry. 2005;  66 1524-1528
  • 113 Schönfeldt-Lecuona, Walter H, Connemann B J. et al . Historical Review and recent research trends of the antidepressant repetitive transcranial magnetic stimulation (rTMS).  Fortschritte der Neurol. 2002;  70 520-530
  • 114 De Ridder D, De Muller G, Verstraten E. et al . Primary and secondary auditory cortex stimulation for intractable tinnitus.  ORL J Otorhinolaryngol Relat Spec. 2006;  68 48-55

Dr. Joachim Cordes

Klinik und Poliklinik für Psychiatrie und Psychotherapie der Heinrich-Heine-Universität

Bergische Landstr. 2

40629 Düsseldorf

Email: joachim.cordes@lvr.de