Zusammenfassung
Die Alzheimer-Demenz ist eine neurodegenerative Erkrankung, die mit mehr als 27 Millionen Betroffenen weltweit bereits heute ein großes sozioökonomisches Problem darstellt. Als ein charakteristisches Merkmal standen lange Zeit die extrazellulären Amyloid-Plaques in Diskussion, die auslösenden Faktoren der Neurodegeneration zu sein. Aktuelle Studien an Tiermodellen und Autopsiematerial verweisen jedoch auf die löslichen und hochtoxischen Aβ-Oligomere als Ursache für das Neuronensterben. Aktuelle Therapien beruhen lediglich auf der Linderung von Symptomen. Interessante neue Ansätze befassen sich mit einer verringerten Produktion, einem verstärkten Abbau und/oder Abtransport der toxischen Aβ-Peptide. Zu den Zielstrukturen zählen unter anderem die ABC-Transporter der Blut-Hirn-Schranke, die als natürliche Barriere des Gehirns fungieren und zur Detoxifizierung beitragen. Eine Beeinflussung dieser Transportfunktion hat weitreichende Folgen für die Pathogenese und Therapie der AD, insbesondere mit dem Ziel der Plaqueauflösung.
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder affecting more than 27 million people worldwide and leading to severe social-economic problems. One characteristic hallmark of AD – the amyloid plaques – are still being discussed to be one important triggering factor. However, current animal and autopsy studies refer to soluble and highly toxic A█ oligomers as the deadly agent for the neurons. Current therapies mainly rely on the abatement of symptoms without antagonizing the etiology of the disease. Potential new approaches address reduced production, increased degradation and/or evacuation of toxic A█ peptides from the brain. Among others one important group of target-proteins are the ABC transporters of the blood-brain barrier which contribute importantly to the detoxification of the brain. Changes of specific transport functions evoke important alterations for the known pathogenesis and future therapies of AD, especially approaches that target plaque dissolution and plaque reduction.
Schlüsselwörter
Alzheimer-Demenz - Blut-Hirn-Schranke - Demenz
Key words
Alzheimer dementia - blood brain barrier - dementia
Literatur
1
Alzheimer’s Association .
2008 Alzheimer’s disease facts and figures.
Alzheimers Dement.
2008;
4
110-133
2
Greenberg B D, Murphy M F.
Toward an integrated discovery and development program in Alzheimer’s disease: the amyloid hypothesis.
Neurobiol Aging.
1994;
15 (Suppl 2)
S105-S109
3
Selkoe D J, Wolfe M S.
Presenilin: running with scissors in the membrane.
Cell.
2007;
131
215-221
4
Strittmatter W J, Saunders A M, Schmechel D. et al .
Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease.
Proc Natl Acad Sci U S A.
1993;
90
1977-1981
5
Pahnke J, Walker L C, Schroeder E. et al .
Cerebral beta-amyloid deposition is augmented by the –491AA promoter polymorphism in non-demented elderly individuals bearing the apolipoprotein E epsilon4 allele.
Acta Neuropathol.
2003;
105
25-29
6
Bickel H.
Dementia in advanced age: estimating incidence and health care costs.
Z Gerontol Geriatr.
2001;
34
108-115
7
Orgogozo J M, Gilman S, Dartigues J F. et al .
Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization.
Neurology.
2003;
61
46-54
8
Holmes C, Boche D, Wilkinson D. et al .
Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial.
Lancet.
2008;
372
216-223
9
Boche D, Zotova E, Weller R O. et al .
Consequence of Abeta immunization on the vasculature of human Alzheimer’s disease brain.
Brain.
2008;
131
3299-3310
10
Cheng I H, Scearce-Levie K, Legleiter J. et al .
Accelerating amyloid-beta fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models.
J Biol Chem.
2007;
282
23 818-23 828
11
Lesné S, Koh M T, Kotilinek L. et al .
A specific amyloid-beta protein assembly in the brain impairs memory.
Nature.
2006;
440
352-357
12
Schinkel A H, Jonker J W.
Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview.
Adv Drug Deliv Rev.
2003;
55
3-29
13
Walker L C, LeVine 3 rd H .
The cerebral proteopathies.
Neurobiol Aging.
2000;
21
559-561
14
Pahnke J, Wolkenhauer O, Krohn M. et al .
Clinico-pathologic function of cerebral ABC transporters – implications for the pathogenesis of Alzheimer’s disease.
Curr Alzheimer Res.
2008;
5
396-405
15
Lam F C, Liu R, Lu P. et al .
Beta-Amyloid efflux mediated by p-glycoprotein.
J Neurochem.
2001;
76
1121-1128
16
Cirrito J R, Deane R, Fagan A M. et al .
P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model.
J Clin Invest.
2005;
115
3285-3290
17
Vogelgesang S, Warzok R W, Cascorbi I. et al .
The role of P-glycoprotein in cerebral amyloid angiopathy; implications for the early pathogenesis of Alzheimer’s disease.
Curr Alzheimer Res.
2004;
1
121-125
18
Bartels A L, Kortekaas R, Bart J. et al .
Blood-brain barrier P-glycoprotein function decreases in specific brain regions with aging: A possible role in progressive neurodegeneration.
Neurobiol Aging.
2008;
Epub ahead of print
19
Kortekaas R, Leenders K L, Oostrom J C. et al .
Blood-brain barrier dysfunction in parkinsonian midbrain in vivo.
Ann Neurol.
2005;
57
176-179
20
Bartels A L, Willemsen A T, Kortekaas van R. et al .
Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson’s disease, PSP and MSA.
J Neural Transm.
2008;
115
1001-1009
21
Pahnke J, Walker L C, Scheffler K. et al .
Alzheimer's disease and blood-brain barrier function – Why have anti-β-amyloid therapies failed to prevent dementia progession.
Neurosci Biobehav Rev.
2009;
133
1099-1108
Prof. Dr. med. Dr. rer. nat. Jens Pahnke, EFN
Universität Rostock Klinik für Neurologie Neurodegeneration Research Lab (NRL)
Gehlsheimer Straße 20
18147 Rostock
Email: jens.pahnke@med.uni-rostock.de