Zusammenfassung
Ziel: Patienten mit einer koronaren Herzerkrankung (KHK) weisen häufig begleitende arteriosklerotische Gefäßwandveränderungen des peripheren Gefäßsystems (pAVK) auf. Eine pAVK scheint ein zusätzlicher Risikofaktor für das Auftreten kardialer Ereignisse zu sein. In unserer Untersuchung korrelierten wir das Auftreten von Gefäßwandveränderungen, die mittels Ganzkörper-MR-Angiografie detektiert wurden, mit dem Maß an Koronargefäßverkalkungen, die mittels EBCT oder MSCT gefunden wurden. Material and Methoden: 228 Patienten (161 Männer; 67 Frauen) mit Verdacht auf eine KHK bzw. mit einer bekannten KHK wurden mittels kontrastverstärkter Ganzkörper-MR-Angiografie und EBCT/MSCT untersucht. Für jeden Patienten wurde ein Arterioskleroseindex berechnet:
Index = ∑40
n=1 wi
(wi Grad der Stenose in iten der 40 Gefäßsegmente [Grad: 0 – kein Plaque; 1 – Plaque – ≤ 50 % Stenose; 2 – > 50 % Stenose – ≤ 90 % Stenose; 3 – > 90 % Stenose – < 100 % Stenose; 4 – Gefäßverschluss]). Ergebnisse: Die Ganzkörper-MR-Angiografie und die koronare Koronarkalkbelastung korrelieren mäßig. Für einen Arterioskleroseindex 8 liegt der positiv prädiktive Wert für eine Koronarkalkbelastung 100 bei 63,3 %. Schlussfolgerung: Der hier benutzte Arterioskleroseindex korreliert nicht im vollen Umfang mit dem Ausmaß der KHK, so wie es mittels Koronarangiografie oder EBCT/MSCT detektiert werden kann, jedoch spiegelt er theoretisch das erhöhte Risiko für Patienten mit einer pAVK für eine KHK wider. Dieser Index könnte daher ein weiteres vielsprechendes Hilfsmittel für die Vorhersage von kardialen Ereignissen sein. Jedoch müssen weitere Studien dieses zeigen.
Abstract
Purpose: Patients with coronary artery disease (CAD) show a high prevalence for concomitant atherosclerotic peripheral arterial disease (PAD). On the other hand, PAD seems to be an additional risk factor for cardiac events. We evaluated the correlation between arterial pathologies as found in whole-body MR angiography and coronary artery calcification (CAC) detected by electron beam computed tomography (EBCT) and multislice CT (MSCT). Materials and Methods: Two hundred and twenty-eight patients (161 men; 67 women) with suspicion for CAD/known CAD underwent whole-body contrast-enhanced MR angiography (wb-ce-MRA) and EBCT/MSCT. An atherosclerosis index was calculated for each patient
Index = ∑40
n=1 wi
with wi being the grading of the stenosis of the iten of 40 arteria segments (grade: 0 – no plaque; 1 – plaque – ≤ 50 % stenosis; 2 – > 50 % stenosis – ≤ 90 % stenosis; 3 – > 90 % stenosis – < 100 % stenosis; 4 – occlusion). Correlations between CAC and atherosclerosis index were performed. Results: Wb-ce MRA and CAC correlate only moderately in this population. An atherosclerosis index 8 renders a positive predictive value for a CAC 100 of 63.3 %. Conclusion: An atherosclerosis index as defined in this study does not fully correlate with the extent of CAD as revealed by catheter angiography or EBCT/MSCT, but it might theoretically mirror the increased risk by PAD. It thus might be a promising complementary parameter for the prediction of cardiac events. Future studies need to show its possible additional predictive impact.
Key words
vascular - MR angiography - CT electron beam
References
1
Myerburg R J, Kessler K M, Castellanos A.
Sudden cardiac death: epidemiology, transient risk, and intervention assessment.
Ann Intern Med.
1993;
119
1187-1197
2
Shepherd J, Cobbe S M, Ford I. et al .
Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group.
N Engl J Med.
1995;
333
1301-1307
3
Wilson P W, D’Agostino R B, Levy D. et al .
Prediction of coronary heart disease using risk factor categories.
Circulation.
1998;
97
1837-1847
4
Assmann G, Schulte H.
The Prospective Cardiovascular Munster Study: prevalence and prognostic significance of hyperlipidemia in men with systemic hypertension.
Am J Cardiol.
1987;
59
9G-17G
5
Schmermund A, Stang A, Mohlenkamp S. et al .
Prognostic value of electron-beam computed tomography-derived coronary calcium scores compared with clinical parameters in patients evaluated for coronary artery disease. Prognostic value of EBCT in symptomatic patients.
Z Kardiol.
2004;
93
696-705
6
Shaw L J, Raggi P, Schisterman E. et al .
Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality.
Radiology.
2003;
228
826-833
7
Erbel R, Mohlenkamp S, Kerkhoff G. et al .
Non-invasive screening for coronary artery disease: calcium scoring.
Heart.
2007;
93
1620-1629
8
Knez A, Becker C, Becker A. et al .
Determination of coronary calcium with multi-slice spiral computed tomography: a comparative study with electron-beam CT.
Int J Cardiovasc Imaging.
2002;
18
295-303
9
Dormandy J, Heeck L, Vig S.
Lower-extremity arteriosclerosis as a reflection of a systemic process: implications for concomitant coronary and carotid disease.
Semin Vasc Surg.
1999;
12
118-122
10
Cohen M G, Pascua J A, Garcia-Ben M. et al .
A simple prediction rule for significant renal artery stenosis in patients undergoing cardiac catheterization.
Am Heart J.
2005;
150
1204-1211
11
Rockman C B, Jacobowitz G R, Gagne P J. et al .
Focused screening for occult carotid artery disease: patients with known heart disease are at high risk.
J Vasc Surg.
2004;
39
44-51
12
Diehm C, Kareem S, Lawall H.
Epidemiology of peripheral arterial disease.
Vasa.
2004;
33
183-189
13
Januzzi J L, Buros Jr J, Cannon C P.
Peripheral arterial disease, acute coronary syndromes, and early invasive management: the TACTICS TIMI 18 trial.
Clin Cardiol.
2005;
28
238-242
14
Naghavi M.
Preventive Cardiology: the SHAPE of the future. A Synopsis from the Screening for Heart Attack Prevention and Education (SHAPE) Task Force report.
Herz.
2007;
32
356-361
15
Meaney J F, Ridgway J P, Chakraverty S. et al .
Stepping-table gadolinium-enhanced digital subtraction MR angiography of the aorta and lower extremity arteries: preliminary experience.
Radiology.
1999;
211
59-67
16
Ruehm S G, Goyen M, Barkhausen J. et al .
Rapid magnetic resonance angiography for detection of atherosclerosis.
Lancet.
2001;
357
1086-1091
17
Goyen M, Herborn C U, Kroger K. et al .
Detection of atherosclerosis: systemic imaging for systemic disease with whole-body three-dimensional MR angiography – initial experience.
Radiology.
2003;
227
277-282
18
Zenge M O, Vogt F M, Brauck K. et al .
High-resolution continuously acquired peripheral MR angiography featuring partial parallel imaging GRAPPA.
Magn Reson Med.
2006;
56
859-865
19
Berg F, Gossmann A, Bangard C. et al .
Pelvic and lower leg arteries: Diagnostic accuracy of contrast-enhanced MR-Angiography at 3.0 Tesla in hybrid techniques.
Röntgenstr Fortschr.
2008;
180
169
20
Hadizadeh D, Gieseke J, Kukuk G. et al .
Highly accelerated 4D MRA with keyhole (4D TRAK) and additional view-sharing at 3.0 T.
Röntgenstr Fortschr.
2008;
180
170
21
Seeger A, Fenchel M, Doring J. et al .
Whole-body MR angiography using two-dimensional parallel immagin (iPAT2) at 3 T.
Röntgenstr Fortschr.
2009;
181
85-86
22
Vahl A C, Geselschap J, Montauban van Swijndregt A D. et al .
Contrast enhanced magnetic resonance angiography versus intra-arterial digital subtraction angiography for treatment planning in patients with peripheral arterial disease: a randomised controlled diagnostic trial.
Eur J Vasc Endovasc Surg.
2008;
35
514-521, discussion 522 – 513
23
Vogt F M, Herborn C U, Parsons E C. et al .
Diagnostische Wertigkeit der kontrastverstärkten Magnetresonanzangiografie der Beckenstrombahn mit dem intravaskulären Kontrastmittel Vasovist®: Erste klinische Erfahrungen im Vergleich zur i. a. DSA.
Röntgenstr Fortschr.
2007;
179
412-420
24 Brauck K, Breuckmann F, Barkhausen J. et al .Concomitant atherosclerotic changes in whole-body MR-Angiography and coronary calcium deposit in patients with catheter-staged coronary artery disease. Proc. ISMRM abstract no 1965. Seattle, USA; 2006
25
Hansen T, Ahlstrom H, Wikstrom J. et al .
A total atherosclerotic score for whole-body MRA and its relation to traditional cardiovascular risk factors.
Eur Radiol.
2008;
18
1174-1180
26
Goyen M, Quick H H, Debatin J F. et al .
Whole-body three-dimensional MR angiography with a rolling table platform: initial clinical experience.
Radiology.
2002;
224
270-277
27
Vogt F M, Zenge M O, Ladd M E. et al .
Peripheral vascular disease: comparison of continuous MR angiography and conventional MR angiography – pilot study.
Radiology.
2007;
243
229-238
28
Hunold P, Vogt F M, Schmermund A. et al .
Radiation exposure during cardiac CT: effective doses at multi-detector row CT and electron-beam CT.
Radiology.
2003;
226
145-152
29
Schlosser T, Hunold P, Schmermund A. et al .
Coronary artery calcium score: influence of reconstruction interval at 16-detector row CT with retrospective electrocardiographic gating.
Radiology.
2004;
233
586-589
30
Agatston A S, Janowitz W R, Hildner F J. et al .
Quantification of coronary artery calcium using ultrafast computed tomography.
J Am Coll Cardiol.
1990;
15
827-832
31
Schmermund A, Lehmann N, Bielak L F. et al .
Comparison of subclinical coronary atherosclerosis and risk factors in unselected populations in Germany and US-America.
Atherosclerosis.
2007;
195
e207-e216
32
Haberl R, Becker A, Lang C. et al .
Ausschluss von Koronarkalk mit Elektronenstrahltomographie: Geeignet als Filter vor invasiver Diagnostik bei symptomatischen Patienten?.
Z Kardiol.
2001;
90
21-27
33
Guerci A D, Spadaro L A, Goodman K J. et al .
Comparison of electron beam computed tomography scanning and conventional risk factor assessment for the prediction of angiographic coronary artery disease.
J Am Coll Cardiol.
1998;
32
673-679
34
Kajinami K, Seki H, Takekoshi N. et al .
Noninvasive prediction of coronary atherosclerosis by quantification of coronary artery calcification using electron beam computed tomography: comparison with electrocardiographic and thallium exercise stress test results.
J Am Coll Cardiol.
1995;
26
1209-1221
35
Kennedy J, Shavelle R, Wang S. et al .
Coronary calcium and standard risk factors in symptomatic patients referred for coronary angiography.
Am Heart J.
1998;
135
696-702
36
Ruehm S G, Goehde S C, Goyen M.
Whole body MR angiography screening.
Int J Cardiovasc Imaging.
2004;
20
587-591
37
Herborn C U, Vogt F M, Goyen M. et al .
Kardiovaskulare Ganzkörper-MRT: Möglichkeiten und Grenzen in der Früherkennung.
Radiologe.
2004;
44
826-834
38
Naghavi M, Libby P, Falk E. et al .
From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I.
Circulation.
2003;
108
1664-1672
39
Stanford W, Thompson B H, Burns T L. et al .
Coronary artery calcium quantification at multi-detector row helical CT versus electron-beam CT.
Radiology.
2004;
230
397-402
40
Schmermund A, Mohlenkamp S, Stang A. et al .
Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: rationale and design of the Heinz Nixdorf RECALL Study. Risk Factors, Evaluation of Coronary Calcium and Lifestyle.
Am Heart J.
2002;
144
212-218
41
Ladd S C, Debatin J F, Stang A. et al .
Whole-body MR vascular screening detects unsuspected concomitant vascular disease in coronary heart disease patients.
Eur Radiol.
2007;
17
1035-1045
Dr. med. Katja Seng
Universitätsklinikum Essen, Abteilung für diagnostische und interventionelle Radiologie und Neuroradiologie
Hufelandstraße 55
45122 Essen
Germany
Telefon: ++ 49/2 01/72 38 45 15
Fax: ++ 49/2 01/7 23 15 63
eMail: katja.seng@uni-duisburg-essen.de